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2 Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]
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dim U, > dim Q, is a necessary condition for the uniqueness of the pressure solution pj, of the
_| discrete saddle point variational problem (12.3.0.4). -
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4+ M is a uniform tensor product mesh of the unit
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4 pressure space Q;, = So‘l(M) NL2(Q)
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P1-P0 pressure field, N=50

P1-PQ velocity vector field, N=50
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