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Theorem 12.3.3.13. Convergence of stable FE for Stokes problem

It Uy, Qy is a stable finite element pair (— Def. 12.3.2.7) for the Stokes variational saddle point
problem (12.2.2.19), then the corresponding finite element Galerkin solution (vy,, p;,) satisfies
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with a constant C > 0 that depends only on (), j, and the shape regularity of the finite element

mesh.
\4

I . l / OM/@
v sypeth 2, J2

Sokes FEM, e el S

__|® The pair (U}, Qy,) of finite element spaces must be stable (— Def. 12.3.2.7) |

—|® The velocity finite element space Uj, should provide the same rate of algebraic convergence of the |
H'(Q)-best approximation error w.r.t. 1y, — 0 as the pressure space Qy, in L2(Q).

® The velocity finite element space U}, should guarantee @ and ® with as few degrees of
freedom as possible.

__| The Taylor-Hood (P2-P1) finite element method for Stokes problem relies on i
4 atriangular/tetrahedral or rectangular/hexahedral mesh M of (), which may even be hybrid, see

Section 2.5.1, ]
— |+ thevelocity space: Uy, := (89(M))* C (H)(Q))?, and i
4 the pressure space: Qp = S?(M), which means a continuous pressure approximation.
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~ velocity: w;iIEI{I; ”V — Wy, “Hl(Q) < CthM ||V||H3(Q) by Thm. 3.3.5.6,

- pressure: inf |[p — g [12(q) < Cth||p||Hz(Q) by Thm. 3.3.2.21.
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~ Monitored:  Error norms ||u — u;,||H1(Q),
— [u— uh”LZ(Q)7 lp — PhHLZ(Q)
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——Observation: algebraic convergence

Iv = wyll () = OUy)
IV —=Vill20) = O(H) ,
o lp = Prlliz) = O -

Discretization error [log]
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Mesh width [log]
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