

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

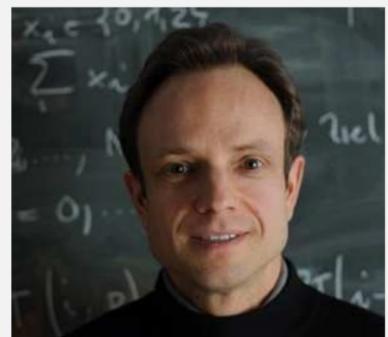
Course Video

Section 12.3.4: The Taylor-Hood Finite Element Method

Prof. R. Hiptmair, SAM, ETH Zurich

Date: May 19, 2024

(C) Seminar für Angewandte Mathematik, ETH Zürich



Dependencies. [Lecture → Section 12.3.3], [Lecture → Section 2.6], [Lecture → Section 3.3.5]

Duration: 30 minutes

Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]

XII. Finite Elements for the Stokes Equations

12.3. Galerkin Discretization of the Stokes Saddle Point Problem

$$\underline{v} \in (H_0^1(\Omega))^d, \quad p \in L_*^2(\Omega) \quad \text{s.t.}$$

$$\begin{aligned} \int_{\Omega} \mu \mathbf{D}\mathbf{v} : \mathbf{D}\mathbf{w} \, dx + \int_{\Omega} \operatorname{div} \mathbf{v} p \, dx &= \int_{\Omega} \mathbf{f} \cdot \mathbf{w} \, dx \quad \forall \mathbf{w} \in (H_0^1(\Omega))^d, \\ \int_{\Omega} \operatorname{div} \mathbf{v} q \, dx &= 0 \quad \forall q \in L_*^2(\Omega). \end{aligned} \quad (12.2.2.19)$$

$$\begin{aligned} \mathbf{v} \in U := (H_0^1(\Omega))^d &: \quad a(\mathbf{v}, \mathbf{w}) + b(\mathbf{w}, p) = \ell(\mathbf{w}) \quad \forall \mathbf{w} \in U, \\ p \in Q := L_*^2(\Omega) &: \quad b(\mathbf{v}, q) = 0 \quad \forall q \in Q. \end{aligned} \quad (12.3.0.2)$$

12.3.1. Pressure Instability

12.3.2. Stable Galerkin Discretization of Stokes Saddle Point Problem

12.3.3. Convergence of Stable FEM for Stokes

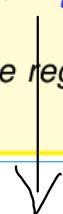
12.3.4 The Taylor-Hood FEM

Theorem 12.3.3.13. Convergence of stable FE for Stokes problem

If (U_h, Q_h) is a stable finite element pair (\rightarrow Def. 12.3.2.7) for the Stokes variational saddle point problem (12.2.2.19), then the corresponding finite element Galerkin solution (\mathbf{v}_h, p_h) satisfies

$$\|\mathbf{v} - \mathbf{v}_h\|_{H^1(\Omega)} + \|p - p_h\|_{L^2(\Omega)} \leq C \left(\inf_{\mathbf{w}_h \in U_h} \|\mathbf{v} - \mathbf{w}_h\|_{H^1(\Omega)} + \inf_{q_h \in Q_h} \|p - q_h\|_{L^2(\Omega)} \right),$$

with a constant $C > 0$ that depends only on Ω , μ , and the shape regularity of the finite element mesh.



"balanced": Should have the same order
for smooth \mathbf{v}, p

Stokes FEM, requirements

- ① The pair (U_h, Q_h) of finite element spaces must be **stable** (\rightarrow Def. 12.3.2.7)
- ② The velocity finite element space U_h should provide the **same rate of algebraic convergence** of the $H^1(\Omega)$ -best approximation error w.r.t. $h_M \rightarrow 0$ as the pressure space Q_h in $L^2(\Omega)$.
- ③ The velocity finite element space U_h should guarantee ① and ② with as few degrees of freedom as possible.

② & ③ \Leftrightarrow efficiency

The **Taylor-Hood (P2-P1)** finite element method for Stokes problem relies on

- ◆ a triangular/tetrahedral or rectangular/hexahedral mesh \mathcal{M} of Ω , which may even be hybrid, see Section 2.5.1,
- ◆ the velocity space: $U_h := (S_{2,0}^0(\mathcal{M}))^2 \subset (H_0^1(\Omega))^d$, and
- ◆ the pressure space: $Q_h := S_1^0(\mathcal{M})$, which means a **continuous pressure** approximation.

\Leftarrow A stable pair!

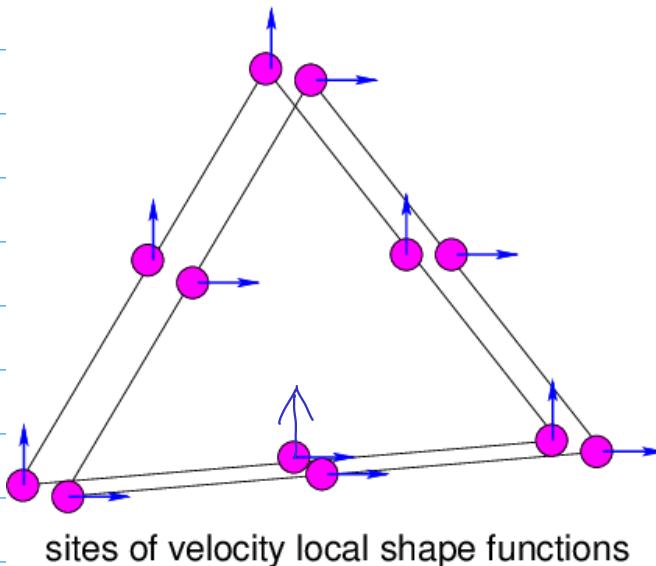
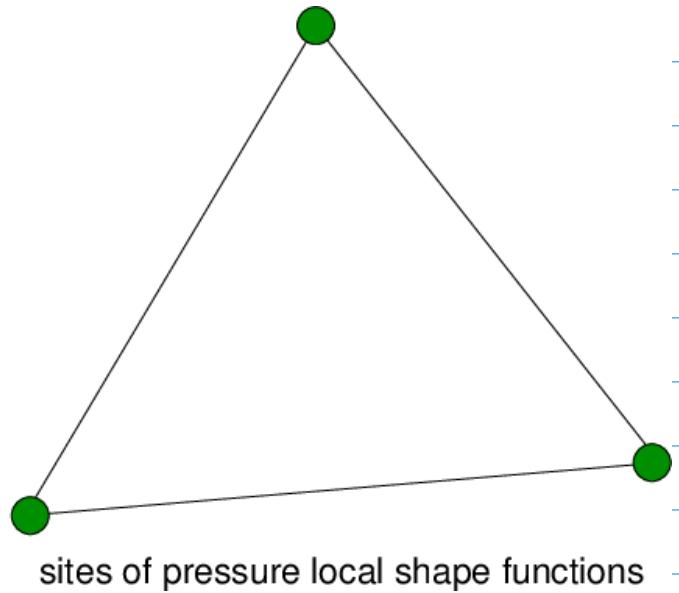
velocity: $\inf_{\mathbf{w}_h \in U_h} \|\mathbf{v} - \mathbf{w}_h\|_{H^1(\Omega)} \leq Ch_M^2 \|\mathbf{v}\|_{H^3(\Omega)}$ by Thm. 3.3.5.6,
 pressure: $\inf_{q_h \in S_0^{-1}} \|p - q_h\|_{L^2(\Omega)} \leq Ch_M^2 \|p\|_{H^2(\Omega)}$ by Thm. 3.3.2.21.

↑
balanced

▷ $O(h_M^2)$ - cvg. of total error

$u_n \stackrel{\cong}{=} \text{component wise nodal basis function}$

$Q \stackrel{\cong}{=} \text{tent function}$



Exp. 12.3.4.5 (TH-FEM)

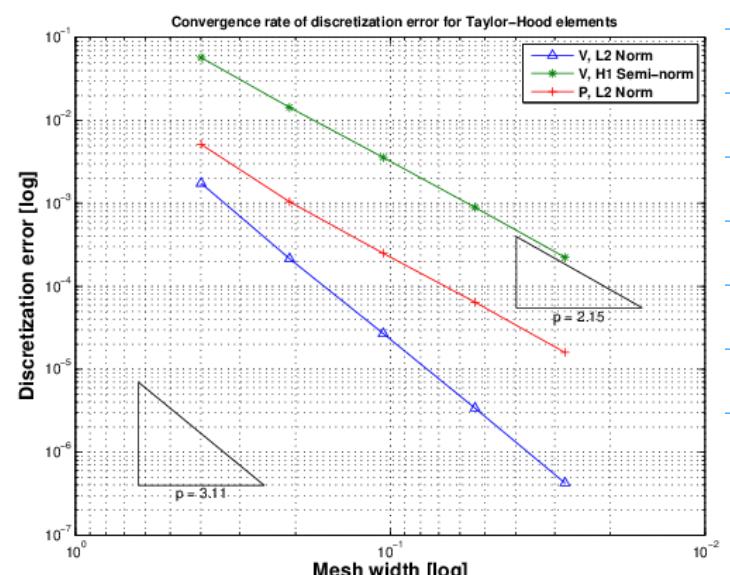
Monitored: Error norms $\|\mathbf{u} - \mathbf{u}_h\|_{H^1(\Omega)}$,
 $\|\mathbf{u} - \mathbf{u}_h\|_{L^2(\Omega)}$, $\|p - p_h\|_{L^2(\Omega)}$

Observation: algebraic convergence

$$\|\mathbf{v} - \mathbf{v}_h\|_{H^1(\Omega)} = O(h_M^2),$$

$$\|\mathbf{v} - \mathbf{v}_h\|_{L^2(\Omega)} = O(h_M^3),$$

$$\|p - p_h\|_{L^2(\Omega)} = O(h_M^2).$$



▷ Look at R.Q.s

