NumPDE Course, (C) SAM ETHZ

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Course Video
Section 13.1.3: Differential Forms

T Prof. R. Hiptmair, SAM, ETH Zurich

Date: May 3, 2025
(C) Seminar fur Angewandte Mathematik, ETH Zlrich

Prerequisites.
* Multi-linear algebra, determinants
« Fundamentals of vector analysis R
Dependencies. [Lecture — Section 13.1.2]

Duration: minutes

2 Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]
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313  Diftaenbal Forms
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— e(x, t) can be regarded as a linear mapping from displacements into IR.

] —
b(x, t) should be read as an_anti-symmetric (*) bilinear form (6, m) — RR.
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Definition 13.1.3.4. Alternating /-linear form

An alternating /-linear form y, £ € IN, on a real vector space V is a mapping

o p:VxVx...xV—-R,

¢ times

which (i) is linear in each of its £ arguments, and which
(i) changes sign, when any two arguments are swapped (“alternating”).
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XA'(Q) :=

{w e A'(Q) with all coefficient functions € X(Q)} S
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basis (set of alternating /-linear forms on IR?)

— | £=0 {1} 7
=1 {{v— v}, {v— v}, {x— v3}} -
=2 {{(v,w) = vows —vzwp }, {(v,w) — v3wy — vyws}, {(v, W) — vjwpy —vow1}} [

|1 £=3 {(v,w,q) — det(v,w,q)} T

— Table 13.1.3.15: Standard choices of bases for A‘(R%), v, w, q e R3 —
7 Ve fiondon

— L Differential /-form Related function u//vectorfield u 7V A

10 X — w(x) u(x) :== w(x) u:0Q—R

—1 x — {vi— w(x)(v)} u(x) - v:=w(x)(v) u: 0 — R3

12 x = {(v1,v2) = w(x)(vy,v2)} u(x) - (vi x vp) := w(x)(vy, va) u:Q—R3

— 3| x—= {(v1,v2,v3) = w(x)(vi,v2,v3) } | u(x)det(vy, vo,v3) := w(x)(vy, v, v3) [ u: Q — R

Table 13.1.3.19: "Canonical” identification of differential forms with functions/vector fields in R>

Nbotahon

V.p (@)

d=J

— /L Differential /-form Related function u/vectorfield u —

—10 X — w(x) u(x) := w(x) u:Q—R [

o Option I: : -
1 x = {v = w(x)(v)} = U W) |0 o R

o Option Il: u(x)*-v B
2| x—= {(vy,v2) = w(x)(vy,v2)} | u(x)det(vy,va) :=w(x)(vy,v2) |u:Q—R

Table 13.1.3.23: 2D Euclidean function/vector proxies for differential forms on Q) C R?
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/w _/ (D) ()1, -, (DF) (), ) dp - (13.1.3.28)
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- (w(x) for /=0, T={x}, x€Q, B

for (=1,

: x) - ds(x)
Jrv.p-(w)(x) -n(x)dS(x) for (=2, f&/% W@/ﬁ/

(Jrv-p-(w)(x) dx for (=23.

(13.1.3.34)

Disconhatlons DE il on  [F
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| Continuous differential /-forms w; € COAY(Q),), wy € COAL(Q)), give rise to a valid integral /-form |

on () by piecewise integration, if and only if

w](x)(tl ..... t[) L Cdz(X)(t] ..... tp) th,. e 7-1(2) Vx e X. (131337)

L = () - rm/@h//éé—lb

= | - 7‘4%%)&/ cont 7 L p.(wlxp,
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DF @ weCA(R)

W vastes o T = 9 &
Cow(x)(ty,. .., ty) = 0 Vtangentvectors ty, ..., treTe(X), VxeX. (13.1.3.41)

=7 v%/ﬂgdﬁh@/ b T

v S0 Y

L= - V.0 (i) x 0l = ([ e op

1=-7 k,/./fa./m)[x\)-ﬁ/:x) =/ ¥xelky

FA -

0 Vxe X = perfectly electrically conducting (PEC) b.c. (13.1.3.43)
0 Vx e & = zero flux b.c. (13.1.3.44)
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w(x)(vi,...,ve) o= lim 7 (w, P(x)) , (13.1.3.46)
- P(x) = {x—i—ttéivi: 0<¢<1,i=1,..., E}, \/L_é/’QO’( o
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