NumPDE Course, (C) SAM ETHZ

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

- Course Video =
Section 13.1.4; Exterior Calculus

] Prof. R. Hiptmair, SAM, ETH Zurich

Date: May 3, 2025
(C) Seminar fur Angewandte Mathematik, ETH Zdrich

~_Prerequisites.
« Multi-dimensional calculus and vector analysis, [Lecture — Section 0.3.2.2], [Lecture — Sec-
tion 0.3.2.5] o
__Dependencies. [Lecture — Section 13.1.2], [Lecture — Section 13.1.3], [Lecture — Section 1.5.2],
[Lecture — Section 2.8.3]

Duration: minutes

2 Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]
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integration according to (13.1.3.28) . —

differential /-form on X > integral /-form on X

- ?l o l (13.1.4.3)

localization according to (13.1.3.46)

differential /-form on & < integral /-form on )3

Definition 13.1.4.4. Pullback/transformation for differential forms

| Given a C'-mapping @ : QO — Q, O, Q c R? domains, the pullback ®* : A/(Q) — AY(QY),
0 < ¢ < d,isdefined as [ [06&/ [ J

(®*w)(®F)(vy, ..., v¢) = w(®F))(D®(X)vy,..., DBFE)v)) Vvie R! Vie Q.

Theorem 13.1.4.5. Invariance of integrals under pullback

Using the notations of Def. 13.1.4.4, the pullback ®* : A‘(Q)) — AL (Q) satisfies

— D w) = VT € 5,(Q), 13.1.46)
f@w)=[ o VEes0) (13.1.4.6)

which ensures compatibility with the pullback of integral forms.

v 3D VP x = @)

o forms/vector proxies Pullback induced by ® : ) — Q |
— =0 u=v.p.(w),il:=v.p.(Pw) i(x) = u(x) B
T | f=1|u=v.p.(w),u:=V.p.(®Pw) (%) = D®(%) "u(x) B
=2 |u=v.p.(w), U= v.p.(®w) | U(X) =detD®(x)D®(¥) 'u(x) |
| t=3u=v.p.(w), T :=v.p.(®*W) iU(x) = detD®(¥)u(x) -

lable 13.1.4.13: Pullback of differential forms in terms of 3D Euclidean vector proxies
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3142 Exbiry Domiahve

§ 3111 Macwell s equatinr

A Y

%Wmuo the electric field e (Sl units [e] = Vm™!), see § 13.1.1.1, -
*« the magnetic induction field b (Sl units [b] = Vsm~?), see § 13.1.1.4.
« the magnetic field h (Sl units [h] = Am™1),

« the electric displacement field d (Sl units [d] = Asm™*), and
« the electric current j (Sl units [j] = Am™?). —

A wedobelds G2 —> RS 7
oq. [ AndS = Iid amed %o%éi
d 7

>

%)

electric field e <+ (integral) 1-form e magnetic field h <> (integral) 1-form
magnetic inductionb <+ (integral) 2-form b | electric displacementd <> (integral) 2-form
— electriccurrentj <+ (integral) 2-form j [
Table 13.1.4.16: Integral-form models for the four basic electrodynamic quantities

h
d

Maxwell’s equations ) .

Vi T S, (57) -
- Faraday’s law: (e(t)@ult)) = —%(h(t),Z(t)) , (13.1.4.18) -
Ampere’s law: (h(t),0%(t)) = %(g(t),Z(t)) + <j(t),Z(t)> : (13.1.4.19)

) J

2 5(Q) —= 5,(2)  bunday quibr
J’:—F\D '- araday’s law (13.1.4.18): / e(f)=—i/b(t)r (18.1.4.21)

dt
IT(t) 2(t) o
Ampere’s law (13.1.4.19): / h(t) = %/d(t)+ / j(t) . (13.1.422)
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Kequtied - omengtion of DT ()

= inditced  cmemntabor

Definition 13.1.4.27. Exterior derivative of integral forms

Let 2 be an n-dimensional manifold/domain, n € IN. For 0 < { < n the exterior derivative oper-
ators (for integral forms)

d,: Z2) = IH(Z)
are defined as
] (dew,T) = (w,T) Vw € IY(Z) VI € 8p41(%), (13.1.4.28) | —

where the boundary 9T is endowed with the induced orientation.

LA, = =L G

~ Faraday’s law: (e(t),0X(t)) = —%(ll(t),Z(t)) , (13.1.4.18)
Ampere’s law: (h(t),0xX(t)) = %(Q(t),Z(t)) - <i(t),2(t)> X (13.1.4.19)
___as o
- d d . .
die(t) = ——b(t) , dih(t) = —d(t)+j(t) . (13.1.4.30)
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§ 171435 localizaton A

. . , integration according to (13.1.3.28 .
differential /-form on () 2 Ll )> integral /-formon ()

d |

; . , localization according to (13.1.3.46
differential £ + 1-form on () < 9t ( )

integral £ + 1-form on ()

Definition 13.1.4.38. Exterior derivative for C! differential forms

The exterior derivative of a continuously differentiable differential form w € C'A‘(Q) of order
— ¢€{0,...,d—1} onadomain Q) C R? is the continuous differential # + 1-form d,c defined as? -

] (41 7
dew(x)(vi, ..., ven) == Y (=) Dw(x)vi(vi, ..., ¥ ..., Vig) (13.1.4.39)
k=1

for all x € Q) and “tangent vectors” v; € R

4In this formula Dw : QO — L£(RY, A*(RY)) is the (Fréchet) derivative of w, which maps into the space of linear
| mappings RY — A’(RY). -

— A AR — AR
v 3D VE:

CAYQ) — 2 ceAl) s cRA2() —Z ceA3(Q) o
. l v.p. l vp. l vp. l (13.1.4.47)
curl div

C®(Q,R) 2% (0, RY) C>(Q, R?) Co(O,R) .
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Theorem 13.1.4.57. Generalized Stokes theorem

For every domain Q0 C R? and? € {0,...,d — 1} holds true

- /Fdéw — /)Fw Vw € CIAUE), VT €8p1(Q) . (13.1.458)

= 0{/5 — ///é o7 D

[

GO

degree / function/vector proxy u/u f rw dyw o
0 u(x) := w(x) u(x) grad u -
1 u(x) v = wx)(v) Jru(x)-ds(x) curl u B
2 u(x) - (vi x va) 1= w(x)(vy, v2) Jru(x)-n(x)dS(x) | divu —
3 u(x)det(vy, vp,v3) 1= w(x)(vy, v, v3) Jpu(x) dx — -

Table 13.1.4.48: Integration and exterior derivative of differential forms in terms of 3D Euclidean vector
proxies; I' = /-dimensional sub-manifold of ), T' € S,(Q)) —

=0 /grad u(x) -ds(x)= u(p,) — u(p@) , v a curve from p, to p, , (13.1.4.61)7
S ) o
S . N 1z I' an oriented, —
— =1 / curl u(x) - n(x) dS(x) = / u(x) - d3(x), comonct 2-curface (13.1.4.62)
1 r ar e
1 =2 / div u(x) dx= / u(x) -n(x)dS(x), V avolume . (13.1.4.63)
\ Vv oV /

b dwacal Skilve thy

Theorem 13.1.4.64. dod =0

For every domain ) C R? and ¢ € {0,...,d — 2} holds true
| deppodg=0 on CAY(Q) & R(d)) C N(dpyq) (13.1.4.65)

that is, the image of d; lies in the kernel of dy 1.
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—> Mf?j////f—ﬁ - dweanl =

~ Theorem 13.1.4.70. Exterior derivatives and pullbacks commute T

Let ® be a continuously differentiable mapping ® : Q— O, 0,0 c RY domains. Then

CIAYQ) —2 oA ()

dy(@*w) = ®*(dyw) Yw € C'AY Q) & q,-vl d,_.l

- CIAYQ) —2 COAHL(QY). -

/ e(t) =—% b(t) == dre(t) =—%b(t) , (13.1.4.72)

() X(t) -

/ h(f) :% / d(t) + / 10 = dyh(f) =%d(t)+i(t) . (131.4.73)
O (t) X(t) Z(t)

/b’%#m&/ NMagwell Wa% m%%ém
nd n%/ = [ = [

AV \ A
V£ welytme
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§ 13,1476 Conhnudly equaton

d J

Ay ane = Sam i, (131473
o _%dzd(t) — di(t) - (13.1.479)
o L~ I
- L= chatge m§ 3-m 9 B
d d p -
— divd(t) = —Eq(t) = divj(t) |. (13.1.4.80)

)

o , >/ f

3.1 4.3 foteamals
o, / \ 2 . \
RiAd ) & Nid,,)

; Ja— y ),

——  Theorem 13.1.4.81. Existence of potentials ’}'@/D DL%(W 0090}’77/0 fﬂ’)
~ LetQ C R be adomain and1 < ¢ < d. If / *
_ | every oriented, compact and closed® (-dimensional sub-manifold € S;,(Q)) is the -

boundary of an ¢ + 1-dimensional sub-manifold € Sy 1(Q)),
then

weCIANQ), dw=0 = IecCA“YQ) suchthat dy_1y=w. (13.1.4.82)

aWe call ' € §,(Q) closed, if aT = @

) it )

SR T
N
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DAL VP -

— every closed oriented curve in () is the boundary of an orientable 2-surface C (2, (Ty)

then

ue C'(ORY, curlu=0 = TJoveC*Q) suchthat gradv =u. (13.1.4.84)

Such a v is often called a scalar potential of u.

e =2 :If

every 2-surface C () without boundary is the boundary of some volume C (), (To)

—— then o

ue CH{Q,R?), divu=0 = 3IveC*Q,R?® suchthat curlv=u. (13.1.4.85)

This vector field v is called a vector potential of u.
-+ (=3 :Forany Q) holds true:

vu e C'(Q) IveClO,R?) suchthat divv=u. (13.1.4.86)
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b = 0O /Bj%rmafb A,
A

) .
ol Lt o//wf gf

B 1YY Exlenor rﬁ/oc///of

N

—y = %(é d+b -E) , (13.1.499)

, . - 9)

oy dinsity <> 3= o

divi(& x h) +jre= —% . (13.1.4.100)

[ %gn%hf 'S then, |
—  Meof a el hpwwﬁ o ﬁpmf/fm

Definition 13.1.4.102. Exterior product/wedge product of alternating multilinear forms

For a vector space V the exterior product (also called wedge product)
— A AV) x A¥(V) — ATR(VY) —

(A"(V) is the vector space of alternating n-linear forms on V, see Def. 13.1.3.4) is defined as

(@A B)(ve,..., Vitk) = 7 Z sgn(0) &(Vo(1), - - -, Vo(e))B(Vo(e41)s-- - Vo(t+k)) -

| forallwvy,..., vk €V)] /IL Pmé}\mg GZ ([/ e KﬂLk) -




NumPDE Course, (C) SAM ETHZ

o v.p.(w) v.p.() for we COAO(Q), ne COAk(Q) ,k=0,1,2,3, B
v.p(wAy) =S v.p.(w) xv.p.(7) for we COANQ), 7 € COAN(Q),
) v.p.(w)-v.p.(y) for we COAY(Q), 7 € COA*(Q). o
- (13.1.4.113)
JAVA

oo does A iobaad with A 4 @7

— Theorem 13.1.4.117. Pullback and exterior product/wedge product R

Let O, Q) ¢ R? be two domains connected by a C'-mapping @ : Q — Q. Then the pullback ®*
— ofdifferential forms commutes with the exterior product of differential forms: S

— O (wAn) = (®*w) A (Pn) Yw e COA(Q), n€ CONKQ), ke Ny. (13.1.4118) ——

~ Theorem 13.1.4.119. Product rule for exterior derivatives —

—— Forany domainQ) C RY and/,k € {0,...,d} —

— desx(wWAn) =dpwo A+ (=) wAdy Vo € CIAYQ), n € CIAKQ).  (18.1.4120)

+ gon. Solen +hm) .

- /w/\iy — /d(w/\ry—i— DiwAdiy Yw € CIAYQ), 1 € CTAKQ) (13.1.4.124)

- e Sy (52) -

d . L. b o
{ /
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For 27 /¥

ﬂ\/ = 0 . Ju(x)v(x) -ndS(x) = [ grad u(x) - v(x) + u(x) divv(x)dx |. (13.1.4.126)

14¢Q v v

A e { )
7 \
= (s Thm.
T/gg/ / a{,(“(x) x v(x)) -ndS(x) = ‘[Cuﬂ“(x) v(x) — u(x) - curlv(x)dx |. (13.1.4.127)
= |
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