NumPDE Course, (C) SAM ETHZ

——| ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations _—

Course Video
. Section 13.2.1: Cochain Calculus -

Prof. R. Hiptmair, SAM, ETH Zurich

. Date: May 3, 2025
(C) Seminar fur Angewandte Mathematik, ETH Zurich

- Prerequisites.
—+ Elementary linear algebra, matrix calculus I

Dependencies. [Lecture — Section 2.5.1], [Lecture — Section 2.7.2.2], [Lecture — Section 13.1.2],
~ [Lecture — Section 13.1.4]

Duration: minutes
— 2 Video and accompanying tablet notes may not match completely! —

[Corrections and updates may have been made in tablet notes.] 7
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Definition 13.2.1.1. Generalized oriented meshes

A generalized oriented mesh M of a domain Q) C R? is a collection of sets of /-facets,
d

— M= (Fr(M)) =g —

such that

. (iy Fr(M) C Si(Q): every (-facet f € Fy(M) is an_ariented (x), relatively open, bounded, | -

{-dimensional, non-degenerate? C}l,w-surface C R,
(ii) the facets form a partition of Q0

* U U E.(fnf =@ VfeFM), f € il M), k,jefo,....d}, |-
(=0FeF;(M)

] (iii) forevery F € Fy(M),0 < £ < d, its boundary JF is the union of the closures of finitely many | -
¢ — 1-facets:

] VFe Fy(M): 3{fi,..., fm} C Fr_1(M) suchthat 9F = f,U---UFf,, n
— (iv) the intersection of the closures of any two /-facets is an ¢ — 1-facet, e
Vee{1,...,d}, Yf.f e Fu(M): FnFf € Fii(M),

(v) forevery f € Fy(M),0 < (¢ < d,thereisa F € F; 1(M) suchthat f C dF.

aAn (-dimensional sub-manifold C R is called non-degenerate, if it has non-zero /-dimensional volume.
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Given a generalized oriented mesh M = (]—7)‘;20 of a domain Q) C R? an /-cochain & is a map-
ping @ : Fy(M) — R.
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Definition 13.2.1.13. Relative orientation of mesh facets
| GivenF € Fy(M),0< (¢ <d,and f € F;_1(M), we define their relative orientation as -
1 ,if f C F and the orientations of f and JF agree,

o o.(f,F):=< =1 ,if f C F and the orientations of f and oF are opposite, -
] 0 ,if f & dF. -

Definition 13.2.1.16. Exterior derivative for cochains

| Given a generalized oriented mesh M of O C R?and £ € {0,...,d — 1}, the exterior derivative
dy: CH(M) — CHH1 (M) is defined by

- <H,JJ,F>= Y 0if,F)(@,f) VFe Fra(M). (13.2147) |-
fEFM)

e opeainy
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Theorem 13.2.1.21. dod = 0

 For any generalized mesh M of a domain Q0 ¢ R% and ¢ € {0,.. ., d — 2} holds true

— dey10di=0 & Dy 1Dy=0 & R(Dy) CN(Dpyq) - —

dea o prof (A>3, £-1)
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Theorem 13.1.4.81. Existence of potentials

Let Q) C R? be a domain and1 < ¢ < d. If
— ] every oriented, compact and closed (-dimensional sub-manifold of € S;(Q)) is the
boundary of an { + 1-dimensional sub-manifold € Sy, 1(Q)),
then

weCAY(Q), dw =0 = TneCA“YQ) suchthat dy_1p=w. (13.1.4.82)

| %@/pg; [%”/CM % m/bﬁ’m

— Theorem 13.2.1.22. Existence of cochain potentials —

Let the domain Q) C RY satisfy the assumptions of Thm. 13.1.4.81. Then for any generalized
oriented mesh M of Q) and forany 1 < ¢ < d we have

— & eCM): dgoo=0 = 3FfecC"YM) suchthat dy_17j =@ —
| &  R@di_)=N{d) & R(Dy_1)=N(D)). (13.2.1.23)
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— die(t) = —Eh(f) , dih(t) = Ei(f) +j(t), (13.1.4.30)
— d - . IS .
 dE(H) = —2b() , dik() = d() +j(0), (13.2.1.29)
- Aty ME .
— N ) L .
~ DiE(t) = —2b(H) , DiR(r) = Ed(t)+]() (13.2.1.30)
p p 1
. Sve4 ///ﬂfﬁf
— - AL = a/wn Adata
A wmatiable P}ﬁy/ﬂm/b ‘
I —— CC - am /pé}%/mmyfxmmf
- ‘ ‘ -
S, : { I(QQ) : (Célf‘}’;)feﬂ o L {0,1,2,3} . (13.2.1.32)
= M/)ﬁ/ﬂ[//// %/////)
~ é:=Sie, h :=Sih, ¢ h e RM §F1(M)
~b:=Sb, d :=Sd, j:=S5, b,d,j € R™ = §F2(M)
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— These vectors will be exact solution of the algebraic Maxwell's equations 27! C 30 }

wWell 1 (30)

Hunlcnons = Z-#F (M) + 2 FE (M)

#é/@///& = J# 35
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