NumPDE Course, (C) SAM ETHZ

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

* Course Video B
Section 13.2.2: Whitney Forms

o Prof. R. Hiptmair, SAM, ETH Zurich

Date: May 3, 2025
(C) Seminar fir Angewandte Mathematik, ETH Zlrich

Prerequisites.
» Elementary calculus

~ Dependencies. [Lecture — Section 2.6.1] plus all of [Lecture — Section 13.1] and [Lecture — Sec-
tion 13.2.1]

Duration: minutes
2 Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]
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| (Weg@) =0 ) Z(—l)’ (Ai; doAig A= Adod A= Adody,) - (@, f) |, (18.2.2.17)
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o j=1 i=1 e
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ox[xy] Z[xyl

Lemma 13.2.2.22. Local interpolation commutes with exterior derivative

The local interpolant of the exterior derivative of an £-cochain is the same as the exterior derivative
of the interpolant of that cochain,

Cl(M) K, copl(K)
V& € CE(M), }
VK € FyM) < i | o

C£’+1(M) M CooA[“'+1(K) )

dg (W k@) = Wy g1,k (d@)
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o Bix == ezj;)(—nm,-j doAig A+ AdoAi A+ AdgA;, forsome  f € Fy(K) (13.2.2.20)

L hanwlabonr bl o A, —> qud
A —> Yoy X

(=7, 0D wkle = yklv 4= .p(co)

—V. p'(ﬁ}v-:[ﬂi,ﬂj]) = V. p.(/\,' VAN d()/\j — /\j AN d()/\,') = A; grad /\j — /\j grad Ai on K. (13.2.2.24)

3D J=24

7

 BEx = 2(Ai(doA; AdoAr) — Aj(doA; AdiAr) + Ag(doA; AdoAj)) (13.22.33)

fi=2X[a;a;,a¢, {i,jk}C{1,234}. (13.2.2.34)

*v.p.(ﬁ}’K) = Ajgrad A; x grad Ay + Ajgrad Ay x grad A; + Ay grad A; x grad A; . (13.2.2.35)
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V. p(ﬁiK)(x) - gm(x — am

), (13.2.2.36)
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xe K, {mju{ijk}=1{1,2734}.
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——span{v. p(ﬁ%K) }fefz(K)

:{xEK»—)ax+b,a€IR,b€1R3}C(Pl(K))3-

(13.2.2.37)

Degree /

span{v. P-(ﬁ?,x) }fef,.(K)

Cochain coeff.

=0

{xeK—a+b-x,acR beR}

u— u(a;)

/=1 {xeK—a+bxx, abeR} quZ[a,-,aj]u.dg
/=2 {rxeK—ax+b,acR,beR’} quZ[ai,a}-,ak]u'ndS
(=3 {x —c, c e R} u— [ udx

~— Table 13.2.2.41: Vector proxy formulas for the spaces spanned by local Whitney /-forms on K~

i | /A
=~ 0( ﬁg = (UW??L,
Span /5@ 7 L P Bl
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— Definition 13.2.2.43. Generalized interpolation operator for cochains B

Given an /-cochain @ € C '(,"\/l), we define the generalized interpolation operators,
W,:C'(M)=THQ), 0<i<d, (13.2.2.5)
as
(W,@)(x) := (Wi g@)(x) forall xc K, Ke Fy(M), (13.2.244) |

— with W, x according to (13.2.2.17). In particular, W, is a M-piecwise smooth differential /-form. —
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o (@, f) =1 and (@ f')=0 Vf eC(M)\{f}. —

We call the integral /-form

By = W,&5 € TQ) (13.2.2.52)

the Whitney /-form associated with the /-facet f.

| A
—>

s —

- Supp(ﬁf = J{Ke Fy(M): fCK} . (13.2.2.53)
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given a simplicial mesh M of () we have identified the Whitney finite-element space of degree
¢ e{0,...,d},

WHM) == W, (CEHM)) = span({/s}} )) C HA'(d,Q),

feF(M

as a finite-element subspace of the Sobolev space HA(d, Q) of (differential) {-forms on Q).
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If a finite-element space V), locally contains all polynomials of degree p, then, for “sufficiently smooth”
u,

inf ||u —vpl[12q) = O(hf’\,'tl) for hp — 0,

— and on uniformly shape regular meshes with meshwidths /1 1. —

—] y, EWEL(M)

~ of M.

1 £
e - /D =
Theorem 13.2.2. 60 L2-norm best approximation estimates for wt (M)

Ifw € H'AY(Q) then

inf llo =villizae) < Cmllwllmacay -

with a constant C, > 0 that depends only on ¢ and the shape regularity measure (— Def. 3.3.2.20)

Theorem 13.2.2.6/). HA!(d, Q2)-norm best approximation estimates for WW!(M)

 Jfw e H'AY(Q) anddw € H'A*1(Q), then / fiot - e C% B

| 1,,evlaf(\/t lw = villemeay < Chm( @l gacq) + ||d,w||H1A,+1(Q)) ,

with a constant C, > 0 that depends only on { and the shape regularity measure (— Def. 3.3.2.20)
of M.
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