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MS a-baced BYP, vamahionad  mudation

m;; (dla, dla') + m(a', dop)

o m(ar dOPI)

—{ Seek a € HAY(d, Q),p € H,A(d, Q) := {q € HA’(d, Q) : [4v.p.(q)(x)dx

/ jAa Va € HAY(d,Q),
Q

0 vp' € H.AY(d,Q) .

} —

(13.3.3.28) |

£l

U a(v,w) + b(w,p) = lw) Ywel,
. Seek S . P (12.2.2.49)
PeQ  b(og) = 3() v9eQ,
~ where (U andQ are Hilbert spaces, with norms ||-||;; and ||-|| , respectively, -
4 a:UxU—Randb: U x Q — R are continuous/bounded bilinear forms,
o 4C, > 0: a(o,w)| < Cullv w Yo,we U and -
B 7 a(0,w)| < Callollyfeolly 1333.36)
3G, > 0: |b(w,g)] < Gllollyllally Yoel, g€ Q,

4+ (:U—Randg:Q — R are continuous/bounded linear forms.
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NCb) = Lweld  blu,g) =0 Vgedicll

Theorem 12.2.2.23. Ladyzhenskaya—-Babuska—Brezzi conditions (LBB-conditions)

If the following two conditions are satisfied,
(i) the bilinear form a is N (b)-elliptic (ellipticity on the kernel)

Ja > 0: |a(v,0)| > a||v||f; Yo N(b), (LBB1)

— (i) the bilinear form b satisfies the inf-sup condtion —

36> 0 sup @Dl 5 g voeq, (LBB2)
- AT N

— then the variational saddle point problem (12.2.2.49) possesses a unique solution
(v,p) € U x Q, which satisfies

Stebiluty - Ielu+lplo < (Sup 'ﬁfﬁi{' + sup M) , 5 [12.22.04

wel qeQ ”q”Q

— with C > 0_depending only on C,,Cy, and w, . o

Exp/ﬂm hon in Euclidean /)@/Aﬁgy

<!

7 e Ry . a(ff, ) + b(i_i, 7_'i') = [(,‘7‘) Vi_iE]R"l,
€ ]Rn:Q : b(l_),(_(}) . g(&‘)) Vo € R" .

(12.2.2.30)

| JA € R™™: a(v,ij) =7 AV Vi,v € R™, o
- JB € R": b(¥,&) =@ BY Vv eR", &< R", -
3P eR™ (G)=7'¢ VieR" , I3eR"™: @)= 7 Y@ eR",

| ver" i AV + §'B'A = jj'¢ VjeR", (12.2.2.31)
i eR" 23
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~Jer" AV + B'w = @ -
AR g - (12.2.2.32)
N 4 9 | [
= Saddit vpm% e
m>n-: T - B o
A B || ? -
N (12.22.33)
\ T 0% o
B O | o
A~ Vz L’I‘ — , N )
NEY = L7 R B =0 VaseR"?
= JV(E)
- R(Z), Z e B ool cluyms
N K = dim JU(B)
(LBBZ )
o e o
_38>0: sup L0 S ga|, V@ E€R". (12.2.2.35)
jERM 7]

= MB) =307 = Quk(d |=n = k=pn-n

[BEZ == m =n

P

Xtp) =

N(B™)"

03" =

K

T

Thwr. beom LA
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> dveR” - BW =0f76,@“
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d
77 BT = ¢ -AY & X(F)

|

= wwigite , sine W(BT) = {(D %

RB) = N/ (B)" -
(X)

o+, =) =\ _ ) - —) T )y
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WM’M dpoebizgbion -
A, < M | deon I, =
/Q C GZ : g//m/) [ =0

“XIJn vVNV)

LBBI 1o dpopcle 5//%}754 = =7

Theorem 13.3.3.40. Galerkin discretization error estimate for discrete variational saddle point
problems

Let the assumptions of Thm. 12.2.2.23 be satsified. Also assume discrete counterparts of (LBB1)
and (LBB2), namely the discrete LBB-conditions

_ ] 9 i o
3[\‘11 > 0: |a(v,,, vh)l > (\‘11”0],”(1 VU;, € ~"'\"ll(b) 7 (LBBlh)

) b vl’ ’ ) -
3, > 0: sup L)l Bullanllo Van € Qu - (LBB2,)

- U/,ELI/I ||v||l,[ ’ o

then the discrete variational saddle poirit problem (12.2.2.49) possesses a unique solution
(v, pr) € Uy x Qy, which satisfies the Galerkin discretization error estimate

(/

| S +|lp— <C| inf |lv —u + inf
lo = onlly + llp — pallg < (u,,eu,,” nllu e,
/

——  where (v,p) € U x|Q solves (12.2.2.49) and with a A;stant C > 0 depending onlyonC,,C,, and
Xp, ,611 - ‘

T —qth) . (133341)

[ / { )

I das cenhon eoovil I beat appiopiviahion avev

y r [} r~ / / ~

N(b) = $uedl - bly 4,) =0 Vg’ sQFc A,

\

Aot - Aot nmng/ N (b < Nb)

/
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/Q%ﬁﬁ&/ /7]7 N

By :={b},...,bN},

Uu,, N :=dimU,,

ordered bases Bo = {[3,1,,..., 24} of Q. M :=dimQy,
saddle point LSE: A B [v = {i) (12.3.0.7)
e Sa—
eqg. B = L Dbl o, ) .. 4
J ol AR Y it I”;VL
¢zl

3.3.34 Digrele | BB-Gndihons L
a - Baped /Wﬂgmﬂ ctilics

- m)(diay,dia),) + m(a),dopy) = /'/\a’ Va;, € WH(M), o
U 1 h hr 90Ph Q] h h (13.3.3.32)

—m(ay,dop}) = 0 Vp, € WOM)NH.A(d, Q). —

« for the spaces: U <+ HA'(d,Q)) and Q « H.A%d,Q),
— -« for the (bi-)linear forms o

a (a,a’) € HA'(d, Q) x HA'(d, Q) — my;(dqa,dia’),
b « (ap) e HAY(d, Q) x H.A(d, Q) — m(a,dop’),
l a’eHAl(d,Q)r—>/j/\a’,

0

—— and for the Galerkin trial/test spaces: U, <+ WY M), Qj, <+ WO (M) NH,A%d,Q), spaces
of Whitney finite elements.
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(Diccele ) LBB-cendibons -

!/
& 3B>00 sup |m,(a o)l BlPlrogn VP € HAY,Q) . (13.3.353)
a’cHAl(d,Q) a ||HA1(d,Q) ’

//KW%V/I{? //_' V//\L\ — V//L/&[D 6 /’//( l/%p)

> |[dopll2ar ()= CliPl HAV Q) 7

/ . )
sup ‘m,(a rdOP)l > m(dop, dOP)
a’ cHAl(d,Q) @[ a1 (g,0) ||d0P||HA1(d,Q)

, /\ .
[(ml ) e [ °A(5] ’(Dﬁ,é/’lﬂ?ff/ﬂﬂ(]

by camishing, eai
Thin [958 0RO

Dicciele -

im(al, dopy))
& >0 sup P gl regay Yen € WOM) N HLAY(d, Q).
al W (M) ”ah||HA1(d,Q)

— (13.3.3.54)
e AWM < W'lat) - a, = dp,

o Im(aj, dopp)| - Im(dops,dopn)

A, eW(M) ”a;r”HAl(d,Q) - ”dOp;z”HN(d,Q)

\ o
> ||dopnll 2a1 (0 $ Clipnll Ao, -
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LRB] /LB, -
(S 1 / 14 L =g g F?
Assumption . Simple topology of () -

We assume that the assumptions of Thm. 13.1.4.81 on () for / = 1, 2 are satisfied:
 Every oriented closed 2-surface () is the boundary of a sub-domain C ().
T  Every closed directed curve in () is the boundary of an oriented surface C (). -

 N(dy) = {v c HAY(d,Q) : div = 0} — dgHA(d, Q) . (13.3.3.57)
—N(b) = {v € HAY(d, Q) : m(v,dog) =0Vq € HAO(d,Q)} . (13.3.3.56)
[ [ .
/ / B

— Vw»/m%- (ﬁW/IDZZW/WZ M /(/fé/)

/7
/1

[

("= d, shbly ipwilitle on N6}

[

——  Theorem 13.3.3.58. Poincaré-Friedrichs-type inequality for d —

~ Under Ass. 13.3.3.7 and with a constant C; > 0 depending only on () (and on the definition of the
L2-norm) holds true

- IVl 2a1(q) < Cilldivllzaziy Vv € N (b) . (13.3.359)

= [BY)

Theorem 13.3.3.64. Discrete Poincaré-Friedrichs-type inequality for d

Taking for granted Ass. 13.3.3.7 we have
* 2
m;,(chay, diay,) > al|ay |21y Vay € Ni(b), (13.3.3.65)

——  with a constant « > 0 depending only on Q), 1", and the shape regularity measure of M (and on ——
the definition of the L*-norm).

Nole: Nd a comaguamee 8/ thn. 1333 56, because Al (b)d M(b)
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> (Quwu - qnﬁmf/& />/

la = an|[ garg,0) T 1P = Prll Hao @)

- < C( inf |la— Vh”HAl(d,Q) + inf )”P - qh“HAO(d,Q)) , (13.3.3.70)
Vi )

ewl(M) GrEWI(M P
N~ v N——
N ) = /7/ )
- UUNw ) et
) ) / -/~
For il o Yy Sy egollay cmulees of moold.

-~ Corollary 13.3.3.71. Asymptotic Whitney finite element error estimate

~——  Provided thata € H'A'(Q), dja € H'A%(Q), p € H2A%(Q), the asymptotic discretization error
estimate

—] “a — ah”HAl(d,Q) + ”p - ph”HAO(d,Q) — O(h/\/{) for hM — 0 (133372)

holds true for uniformly shape regular families of simplicial meshes M with meshwidths h p4.
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