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@ 2nd-order elliptic Dirichlet problem:

Prerequisites.

¢ Fundamentals of linear algebra: bases, matrices, vectors
Dependency. Requires familiarity with linear variational problems [Lecture — Section 1.4] and quadratic
minimization problems [Lecture — Section 1.2.3].
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Note: Possible minor mismatch of video and tablet notes!

[Corrections and updates can be incorporated into tablet notes only]
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Variational boundary value
problem
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System of a finite number of
equations for (real) unknowns
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g@ Replace the infinite-dimensional function space V) in the linear variational

problem (2.2.0.2) with a finite-dimensional subspace Vj; C Vp.
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Discrete (linear) variational problem (DVP):

up € VO,h: a(uhr U],) - E(U;,) Vo, € VO,h : (2.2.1.1)

the Galerkin solution
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Continuous minimization problem

Discrete minimization problem
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Discrete variational problem

Continuous variational problem
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Theorem 2.2.1.5. Existence and uniqueness of solutions of discrete variational problems

If the bilinear form a : Vi x V) — IR is symmetric and positive definite (— Def. 1.2.3.30) and the
linear form ¢ : V; — IR is continuous in the sense of

AC, > 0: [l(u)| < Collu|l, Yue VW, (1.2.3.43)

then the discrete variational problem (2.2.1.1) has a unique Galerkin solution uy, € Vj j, that satisfies
the energy estimate
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Idea: 4 choose (ordered) basis Bj, = {b,l,, : ..,b{f }, of Vo

/\ VO,h = Span{%h} /V':&ém %})
+

insert basis representation into the variational equation
(2.2.1.1)

o EVop = v = vlb,ll +- 4 va,],V , ,ER, (2221)
up € Vo = up= ;tlb}, +--- +;¢Nb,1,\] , hieR. (222.2)
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DVP: up € Voue aluy,vy) = Lvy) Vo, € Vo (2.2.1.1)
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Theorem 2.2.2.7. Independence of Galerkin solution of choice of basis
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The choice of the basis B, has no impact on the (set of) Galerkin solutions uj, of (2.2.1.1).
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Corollary 2.2.3.1.
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(2.2.1.1) has unique solution < A nonsingular (invertible)
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Lemma 2.2.3.2. Effect of change of basis on Galerkin matrix
Consider (2.2.1.1) and two bases of V j,,
By, :={b},...,bNY , B, :={b},...,b)},

related by the basis transformation matrix S according to

N
=Y sjkbﬁ with S = [sj] ]I.\]k_] e RNN regular. (2.2.3.3)
k=1 T
Then the Galerkin matrices A, A € RN'N, the right hand side vectors §,$ € RY,
and the coefficient vectors ji, ji € RN, respectively, satisfy
A=SAS" , $=Sp , ji=S "q (2.2.3.4)

v

Two matrices A € RNN B € RN, N € IN, are called congruent, if there is a regular matrix
S € RN such that B = SAST.

Definition 2.2.3.5.
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Thm.2.2.2.7: the choice of ‘B, does not affect 1,

= No impact on discretization error ! ’
(assuming exact arithmetic)

/
But: Key properties (e.g., conditioning, sparsity) of the Galerkin matrix crucially depend on B;,! ]

/ %(W

. . v : : : :
o The choice of trial/test spaces V|, determines the quality of the Galerkin solution.

¢ The choice of basis 5, determines how well (stably, efficiently) we can compute the Galerkin
solution.
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Described the first step of the Galerkin discretization of a linear variational problem. What does it yield?
The (OZ%@%W) A oeza hor o a Wneay vamahsond
potey lady @ 7 L near sév&/fm ,67%2/%{)5.

Whadt " fekeomines the Sz of 1 Cabodin ' matix <

C

Give simple necessary and sufficient conditions for existence and uniqueness of solutions of a linear
system of equations arising from the Galerkin discretization of a linear variational problem.

B

Write Aji = ¢ for the square linear system of equations produced by the Galerkin discretization of a linear
variational problem posed on the vector space Vj) and using the basis B := {b,ll,. ey b}l\]} of the discrete

trial/test space Vp,, N := dim Vp,. Now we switch to the rescaled basis B := {b},2b?,3b3, ..., NbN}.
What linear system will we get?
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Let Aji = ¢, A € RNN, g € RN, N € N, be the linear system of equations obtained by the Galerkin
discretization of a linear variational problem (LVP)

ue Vo a(u,v)=4~4rv) YoeV,

using a finite-dimensial trial/test space ;) , C Vj equipped with basis B := {b}], e, b,}f}. Which linear
system do we get when performing the Galerkin discretization of the same LVP but dropping every other

basis function, that is, using the discrete trial/test space spanned by {b}l, b,3,, ceey b{l\’ ~11 (for even N).
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Which properties of a Galerkin matrix do not depend on the choice of basis for the discrete trial and test
space?

(= -

Let A € RVN be the Galerkin matrix obtained by the Galerkin discretization of a bilinear form af(-, -).
Given ji,7 € RN, express the number 7' A7 through a(-, -).
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As regards Galerkin discretization of a linear variational problem, which properties of the right-hand-side
vector do not depend on the choice of basis for the discrete trial/test space?



On a vector space Vy we consider a linear variational problem

ueVp: a(u,v)=4~4(v) YoeV,

with a symmetric positive definite bilinear form a and an ||-|| ,-bounded linear form ¢ : V; — IR. Show that
for every finite-dimensional subspace V;;, C V) there exists a basis B8 C V|, such that the associated
Galerkin matrix for a(-, -) is the indentity matrix.

Hint. Use the following fundamental result from linear algebra:
Theorem 0.3.1.26. Real diagonalization of symmetric matrices

For every symmetric matrix A € R™", that is, A" = A, we can find a diagonal matrix D € R"™"
and an orthogonal matrix Q € IR"" such that

Q'AQ =D. (2.2.3.11)

For a symmetric positive definite matrix A the non-zero entries of the diagonal matrix D are all positive.
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