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Prerequisites.
e Simple calculus in one dimension
e Numerical quadrature by means of composite quadrature rules
Dependency. Depends on [Lecture — Section 1.3|, [Lecture — Section 1.5.1], [Lecture — Section 2.2]

Note: Possible minor mismatch of video and tablet notes!
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[Corrections and updates can be incorporated into tablet notes only]

T Fink Element Methods (FEM)
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C++11 code 2.1.2.6: Example: a functor class definition

template<typename ReturnType ,typename PointCoordinates>
class Function {

using value_type = ReturnType;

using arg_type = PointCoordinates;

Function(void) ;

// evaluation operator

value_type operator () (const arg_type &x) const;
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Approximation in the FEM
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If only point evaluations of f are possible, then the only option is the computation

\g of right hand side vector ¢ € RN by numerical quadrature !
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Replace the integral wnth an m-point quadrature formula/quadrature rule on [a,b], m € IN — :
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The piecewise linear functions used for the finite element Galerkin discretization of a second-order elliptic
boundary value problem on |a, b| are not differentiable on |a, b[ in general. Explain why they can be used
nevertheless.

We consider a graded mesh M, of the interval () := [0, 1] with node set
V(M) := {xj:= (i/n)", ] n},

What is the smallest and largest cell size of M ,?

0,.. nelN, a>0. (2.3.3.18)
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Let {bh,.. b”‘l} stand for the tent function basis of S (Mz) on the graded mesh M; of

Q =0, 1[ whose nodes are given by (2.3.3.18) for & = 2. These basis functions satisfy b] (Xi) = 6,

i,j=1,...,n— 1. Compute the norms ||b} ||L2 and |b} |Hl Q)
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On the graded mesh M, as given by (2.3.3.18) for « = 2 we consider the finite element space S?,o

equipped with the tent function basis {b}, ..., b '}, bh(r,) = iji,] =
tor € IR" ! obtained by the Galerkin discretization of the right-hand side functlonal l(v

(M)
,n—1. Compute the vec-
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E .
We conduct the Galerkin finite-element discretization of the generic second-order elliptic two-point Dirichlet
boundary value problem
x) dx = / f(x

with uniformly positive coefficient ¢, using the trial and test space S{’, o(My) on the graded mesh according
to (2.3.3.18) and with the standard tent function basis. Give sharp upper and lower bounds for the number
of non-zero entries of the Galerkin matrix.

b
u e HY(]0,1]): /a( )Zlé(

a

x)dx Vo e H(]0,1[),

=

What is numerical quadrature and how is it applied in the context of the Galerkin discretization of the
right-hand side linear functional

v '/Olf(x)v(

x)dx, feC%[0,1]) .



The use of the composite trapezoidal quadrature rule on a mesh M of |a,b[ with nodes
a=xp<x;<---<xpm_1< xpm := bamounts to the approximation

b
A ¢(x) dx = thip(xo) + Z ¢(x;)%(h; jt+hip1) + + shap(xm) -

Explain the difficulty encountered when applying this quadrature rule for the computation of entries of the
Galerkin matrix for the linear variational problem

b

u € H)(Ja, b]): /a( )Zlé( /f x)dx Yo € Hl(|a,b]),

a

discretized based on S? (M) and its tent function basis.

We consider the bilinear form

b(u,v) := Al u(x) %(x)dx , uel?]0,1), veHY]o,1]).

We study its Galerkin discretization based on S{,(M) on an equidistant mesh of |0, 1[ with M cells,
using the standard tent function basis. Compute the resulting Galerkin matrix.




