@

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Course Video

Section 2.4: Case Study: Triangular Linear
FEM in Two Dimensions (ll)

Prof. R. Hiptmair, SAM, ETH Zurich

Date: February 21, 2019
(C) Seminar fir Angewandte Mathematik, ETH ZUrich

Prerequisites.
¢ Numerical quadrature
o C++

Dependency. Requires [Lecture —23] and [Lecture — Section 2.2]. Familiarity with [Lecture — Sec-

tion 2.3] is beneficial.

1 Finite Element Methods (FEH)
24 Case Sn‘u:/;/ Tnmy&/df Linear FEM 10 LD

L1, [ﬁm]UUfLﬂ/M/? o GaleHen Mative s
ol pm%ém i bilinay trm v wealk - A

= 7]

a(u,v) := /grad u-gradovdx, u,v€ H)Q).

and a Galerkin discretization based on
e a triangular mesh, see Section 2.4.1, set of vertices {x;} = V(M),
e the discrete trial/test space SY(M) C H'(Q)),

e the nodal basis °B;, = {b{,} of tent functions according to (2.4.3.2).

(/4)[’3 = é(/bj/a}?g) :éﬁ/ﬂﬂ/bi'ﬁ%/&jﬁé{ /L#%

Idea:

“Assembly”
(add up cell contributions)

(A)jj = / grad b;IIKl - grad b;;lK’l dx+
K

1
/ grad b{lle - grad b;IIKZ dx
K3

@2,%16\4 [ecal C@Mpum/ﬁbﬁj mpvﬁf/ﬁm /% (7}6/// A,
) GCeomehic Grmedar %v At (o' 2y ot]

umwy%w%v 4:[?3
Y

ldea:
°a “Assembly”

(add up cell contributions)

1 2 .37
/\1(X) s m(x — az) . Z% - Z% = 2||€Il<|| (x ag) nl ’
(A); /gradb, L - grad gk dv+ S
1% 2 A (x)=L(x—a3>- moal_lel (x—a2)-n?
K, 2 2[K]| al —a3| — 2[K] A
1 () —a3] e
@ /grad bh|1< grad bth%dx Az(x) = m(x_ al) : -a% _a? = _m(x— al) n’.

Ky

/[\ /]\ (e; = edge opposne vertex “z see Figure for numbering a‘l = [a!,a}

| heme) l 1}T 3 f]
Sl et fomchons on eact; biznpts A i
7 (e e 70 74
u%p% Y a') = Pmn@ ¢ W%MW(ZZZ%WZ; Igg;’z)

//AW% pont of - e’ (2) ﬁtgdpmc oy
L&) = <ot frx R, B =quld e R

> BWCWI%VIC CMM{/%@ ﬁhﬂﬁﬁmg q, T] I]
2. (a%) = (%/ 126423 Al %53 =

Restrictions Ay, A5, A5 of p.w. linear nodal basis functions of S?(M) to triangle K

§2.45.2:

=

(2.4.5.10)

o O =
O = O
_—0 O

e p—
=2 0R
— U= P —
=
N

@ C++ code 2.4.5.11: Computation of gradients of barycentric coordinate functions on a trian-
gle => GITLAB

Eigen:: Matrix<double, 2, 3> gradbarycoordinates(const t_TriGeo& Vertices)
{
// Argument Vertices passes the vertex positions of the triangle
// as the rows of a 3X2-matrix, , see Code 2.4.1.3..
// The function returns the components of the gradients as the
// columns of a 2X3-matrix

// Computation based on (2.45.10), solving for the

// coefficients of the barycentric coordinate functions.
10 Eigen:: Matrix<double, 3, 3> X; // Temporary matrix
1 X.block<3, 1>(0, 0) Eigen::Vector3d::Ones() ;

12 X.block<3, 2>(0, 1) = Vertices.transpose() ;

13 return X.inverse () .block<2, 3>(1, 0);

14 }

©w @ ~ o v -~ w N -

4 heient

R 075, fm(ﬁ; an colummns o <3 -matix [

ldea:
“Assembly”

(add up cell contributions)

(A)ij = /grad b{”Kl - grad b}',“(l dx+
Ky

/grad b;rle - grad bf,|K2 dx
K>

> (/H% is a suom o enpies of fwo

3
A, = [jj{ qed 2, qad A, clx j/,{m
e JU

élézmewf nahices
_ /st:-;
,

-

Xi

\)

(A,) #

Lim

C++ code 2.4.5.13: Computation of element matrix for —A on a triangle and for linear La-
grangian finite elements => GITLAB

Eigen:: Matrix3d ElementMatrix_Lapl_LFE(const t_TriGeo& V)
{
// Argument V same as Vertices in Code 2.4.5.11.
// The function returns the 3 X3 element matrix as a fixed size
// EIGEN matrix.

// Evaluate (24.5.1), exploiting that the gradients are constant.

// First compute the area of triangle by determinant formula

const double area = 0.5xstd ::abs(

10 (V(1,0)-V(0,0))=(V(2,1)-V(1,1))—(V(2,0)-V(1,0))*(V(1,1)-V(0,1)));

1" // Get gradients of barycentric coordinate functions,

12 // see Code 2.4.5.11

13 const Eigen:: Matrix<double,2,3> X = @radbarycoordinates(V)3

14 // Compute inner products of gradients through matrix multiplication
15 return areaxX.transpose ()*X;

© =] ~ o v -~ w N -

A Y 5.7 As\wwé% f/ GU Caledn MaknX

(A);; by summing diagonal entries of element matrices of adjacent triangles

|

(A).. = 5= £ o=y

)7 fz%?egk (A ?Zr«@ e AT A

Qmw% | (m’m Z/}LG//JOW ﬂ/ 4{

g?z(///()[zcm% = A, = </[€M2 @W/ﬁj .
= K| X' X

"e 3 (A) by summing entries of two element matrices y
— / 6 [Q / (A);; by summing diagonal entries of element matrices of adjacent triangles
[qed 7, /ﬁm(?z ﬁrw(ﬁj S (ot ”WW‘% p

Pseudocode 2.4.5.16: Vertex-centered assembly of Galerkin matrix for linear finite elements

foreache € (M) (% notation: £(M) = set of edges of M)
(i,7) = vertex numbers of endpoints of e
(A);j <0, (A);; <0,
foreach triangle K adjacent to e
find local numbers [,m € {1,2,3} of endpoints of e
(A),',j — (A>1,] + (:AK)/I,” —+ Fig. 68, Ag from (2.4.5.8)
<A)j,i — (A)M + (:AI\'),”,/ — Fig. 68, Ag from (2.4.5.8)
endfor

N

O Ayt

VA

endfor a

foreachv € V(M)
] = number of vertex v
(A)j; <0
foreach triangle K adjacent to v
| = local number of v in K
(A)jj < (A)j;+ (Ag)i,
endfor
endfor

Peeblm -

AUsmahio
diaal view

ef%) Lﬂ 0?)1{45 dé/?/&ﬂfslpanﬂlﬁ anles ﬂ;/ ”

= @WMM
eines

— Fig. 69, Ag from (2.4.5.8)

Dl

D
%ﬁoffﬁﬁi{% 4?/2% Mélf

50/% g%ﬂz

[> Ul -oneled implamentation (¢ 2451Z)

Pseudocode 2.4.5.19: Assembly of finite element Galerkin matrix for linear finite elements

SparseMatrix A € RNN N := V(M)
A = 0O;
for i=1 to N do
K <+ mesh.getVtCoords(i)
Ak < getElementMatrix(K);
for k=1to3do
for j=1to3 do

A(i:x'=ak, 0:xf —a,\)+— Ax(k,j);

e /l_ iy Wﬁﬁfﬁ/ /%)
Céfmpz)%hﬁw% it - OO /, /7@ /% ;}

b1

(*) Taok of & dof mgxgm/%ﬂf, Pardley

dofh € IN¥M3:

(number of vertices)

2= "Dishiht £ aol "

ping

Data structure: local—global index mapping array: “d.o.f. mapper”

= global number of vertex [of k-th cell € {1, ..., N}

when a', a?, a® are the vertices of K ,

dofh(k, 1)
- (2.4.5.21)

|
Xdoth(kl) — @

forl € {1,2,3},k € {1,..., M}, M := V(M)

Nolc < Fre TiaMash 2D Axk shocte
Adefh (4, L) esh. Elemet/<(4-7./7)

fM, N := (“mathematical indexing™!).

@EXAMPLE 2.4.5.22 (Index mapping by d.o.f. mapper)

In Fig. 71, for cell Kg:

Pseudocode 2.4.5.23: Assembly of finite element Galerkin matrix for linear finite elements

SparseMatrix A € RNN N := V(M) (number of vertices)

A = 0O;

for

i=1 to N do
K <+ mesh.getVtCoords(i)
Ak < getElementMatrix(K);
for k=1to3do

for j=1to3do

A(dofh(i,k),dofh(i, j)) + = Ak(k,j);

endfor
endfor endfor

OO h~MNPODN =

—
N O S

9
13
10
14
11
12

1

6

element matrix Ag contributesto A([10 6 11], [10 6 1171)

DO OO OTwOo N

©aGRIIZSI

C++ code 2.4.5.24: Cell-oriented assembly of Galerkin matrix for linear finite elements on a
triangular mesh = GITLAB

18

fesssg'saammumbzsa

// Functor referencing a function for the computation of the element
// matrices like ElementMatrix Lapl LFE from Code 2.4.5.13.
typedef function<Eigen:: Matrix3d(const t_TriGeo &)> LocalMatrixHandle_t;

Eigen::SparseMatrix <double>
assembleGalMatLFE(const TriaMesh2D& Mesh,
const LocalMatrixHandle_t& getElementMatrix) {
// Fetch the number of vertices
int N = Mesh.Coordinates .rows() ;
// Fetch the number of elements/cells, see § 2.4.1.1
int M = Mesh. Elements.rows () ;
// Create empty sparse Galerkin matrix A
Eigen::SparseMatrix<double> A(N,N);
// Loop over elements and “distribute” local contributions
for (int i = 0; i <M; i++4) {
// Get local—global index mapping for current element, cf. (2.4.5.21)
Eigen::Vector3i dofhk = Mesh.Elements.row(i);
t TriGeo Vertices;
// Extract vertices of current element, see § 2.4.1.1
for (int j = 0; j < 3; j++)
Vertices.col(j) = Mesh.Coordinates.row(dofhk(j)).iranspose();
// Compute 3X3 element matrix Ag
Eigen::Matrix3d Ak = getElementMatrix(Vertices);
// Add local contribution to Galerkin matrix
for (int j = 0; j < 3; j+4)
for (int k = 0; k < 3; k++)
A.coeffRef(dofhk(j),dofhk(k)) += Ak (j, k);

}

|
// Convert into CRS format, see . V A;@#Mgﬂ% /%{%&ﬂ/]ﬁ?

A.makeCompressed() ;

}return A; 80{77{@1” 7y /WW% WC}TVV)%

—

D 246 Cmpolabin o the Wty 7
E’“@/ ‘ (7)3 =Y = g%?b,f/x)dx
= = [PEIbik)Ax

Kix*ek (K

(2.4.6.2)

= lpcad bbb

ldea: “Assembly”

Nj
(o) @=L I!f(r)

where Kj, .. .,KN,. are the trian-
gles adjacent to node x;. No
other matter, because the integra-

tion can be confmed to supp(b’)!

> bl O towm elunedt %d%o
4= [ﬁ&kﬂ
’5 M/ycém/nc CQ?/Z/ et

C++ code 2.4.6.8: Cell-oriented assembly of right hand side vector for linear finite elements,

see (2.4.6.6) = GITLAB

1

typedef function<double(const Eigen::Vector2d&)> FHandle_t;
typedef function<Eigen::Vector3d(const t_TriGeo &,FHandle_t)>
LocalVectorHandle_t;

Eigen::VectorXd assemLoad_LFE(const TriaMesh2D &Mesh,

const LocalVectorHandle_t &getElementVector,

const FHandle_t &FHandle)

{
// Obtain the number of vertices and cells (elements)
int N = Mesh.Coordinates.rows() ;
int M = Mesh. Elements.rows() ;

// Initialize right hand side vector with zero.
Eigen::VectorXd phi = Eigen::VectorXd::Zero(N);

// Loop over elements and “distribute” local contributions
for (int i =0; i <M; i++) {
// get local—global index mapping for current element,
// cf. (2.4.5.21)
Eigen::Vector3i dofhk = Mesh.Elements.row(i);
t TriGeo Vertices;
// Extract geometry of current element, see § 2.4.1.1
for (int j =0; j < 3; j++4)
Vertices.row(j) = Mesh.Coordinates.row(dofhk(j));
//compute element right hand side vector
Eigen::Vector3dd philoc = getElementVector(Vertices, FHandle);
//add contributions to global load vector

for (int j = 0; j < 3; j+4+) Y
OLhilzofrJ]k(j)) i=<phi|;;j); L syl %ﬁﬂ%
}
return phi; i> (03% ﬁ(/&/) \Q\/ > o2

J

544469 (Nomeriead! qutatdhedine o émzm//% J/ RhS. %ﬁvy
Honw o C@m/wlé .
o= [0 BK] 2
L gimin procedzant
> Nmaicd quadialne A

Ey(ﬂm/zyZ(: 2D W/{%W wle

Idea: 2D trapezoidal rule

for triangle K with vertices a', a2, a>

/Kf(’f) dx ~ @(f(al) +f(a2) +f(a3)) ' (2.4.6.10)

2 integration of linear interpolant >, f(a')A; of f.

[f FO) D Gldx = ’”gi Pla®)
<

(@) 3 3 K| f(a1)
B> clement (load) vector: Py = [('.‘K(b{2 ‘K)} = [Cx(Ai)]i—q =~ 3 f(a®)|, (24.6.11)
i= B

9

Revew quv'ons 7463
[Aorwoor in doad-beok oode "]

A ‘ EX/Q[&M,‘V) HL(ﬂr{zﬁ/xmaf’fcs U(ﬂ/@f%/bf 7%[

P&Mmmg 97

C++ code 2.4.5.11: Computation of gradients of barycentric coordinate functions on a trian-
gle = GITLAB

e 0 A LN

Eigen:: Matrix <double, 2, 3> gradbarycoordinates(const TriGeo_t& vertices) {
Eigen:: Matrix<double, 3, 3> X;
// Argument vertices passes the vertex positions of the triangle
// as the rows of a 3X2-matrix, , see
// Code 2.4.1.3. The function returns the components of the
// gradients as the columns of a 2 X3-matrix

// Computation based on (24.5.10), solving for the

// coefficients of the barycentric coordinate functions.
X.block<3, 1>(0, 0) = Eigen::Vector3d ::Ones() ;

X.block<3, 2>(0, 1) = vertices.transpose();

return X.inverse ().block<2, 3>(1, 0);

C++11 code 2.4.1.2: Class handling planar triangular mesh = GITLAB

// Matrix containing vertex coordinates of a triangle

2

3 |using TriGeo_t = Eigen:: Matrix<double, 2, 3>;

4 | struct TriaMesh2D {

5 // Constructor: reads mesh data from file, whose name is passed

6 TriaMesh2D (const std::string&); //

7 | virtual ~TriaMesh2D (void) {} Z
8

9 // Retrieve coordinates of vertices of a triangles as rows of a 3x2

- matrix
10 TriGeo_t getVtCoords(std :: size_t) const;

12 // Data members describing geometry and topolgy
1 Eigen:: Matrix<double, Eigen::Dynamic, 2> Coordinates;
14 Eigen:: Matrix<int, Eigen::Dynamic, 3> Elements;

B

- [Computing gradients of barycentric coordinate functions|
computes an element matrix for —A on a triangle.

Justify, why the following code

C++ code 2.4.5.13: Computation of element matrix for —A on a triangle and for linear La-

grangian finite elements = GITLAB

2 | Eigen:: Matrix3d ElementMatrix_Lapl_LFE (const TriGeo_t& V) {
3 // Argument V same as vertices in Code 2.4.5.11.
4 // The function returns the 3 X3 element matrix as a fixed size
5 // EIGEN matrix.
8
7 // Evaluate (24.5.1), exploiting that the gradients are constant.
8 // First compute the area of triangle by determinant formula
9 double area = 0.5 % std::abs((V(0, 1) — V(0, 0)) * (V(1, 2) — V(1, 1)) —
10 (V(0, 2) — V(0, 1)) = (V(1, 1) = V(1, 0)));
11 // Compute gradients of barycentric coordinate functions, see
12 /7 ??
13 Eigen:: Matrix<double, 2, 3> X = gradbarycoordinates(V);
14 // compute inner products of gradients through matrix multiplication
15 return area * X.transpose() * X;
16

}

- [Taking in account zero Dirichlet boundary conditions|

We are provided with

an_TriaMesh2D object describing a planar triangulation M of a polygon () with N nodes and
d: :vector<bool> bdflags; wherebdflags[k] == true,if the node with number k is located

on d(). Outline how one has to modify Code 2.4.5.24 (this you may look up in the lecture document)so

that it assembles a Galerkin matrix w.r. the trialtest space S, (M).

@:

Write Ak for the element matrix for linear finite elements, the bilinear form a(u,v) := fQ grad u -
grad vdx, and a triangle K. We use numerical quadrature based on the 2D trapezoidal rule to com-
pute the element matrix By for the bilinear form b(u,v) := [o(x) grad u - grad vdx, o € C°(Q)). How

can By be computed from Ag?

Compute the Galerkin matrix for the bilinear form
a(u,v) = / grad u - grad vdx,
0

u,v € H(Q), Q =]—1,1[%, and the trial/test space
SY(M), M shown in Fig. 84, using the tent function
bases numbered according to the numbering of the
nodes of the mesh as indicated in Fig. 84.

Hint. All triangles of the mesh are congruent. You
may also use the formula

cotws + cot wr — cot ws — cotwr
Ax == — cotws cot w3 + cot wq — cot wq
— cotwr — cot w cot wy + cotw,
(2.4.5.8)

giving the S} (M)-element matrix for —A on a trian-
gle with angles w;, i = 1,2,3.

=

The cells of a triangular mesh M are generated by connecting all 7 corners of a regular polygon with di-
ameter 2 with its center. On this mesh we consider the finite element space S? (M) and the corresponding
Galerkin matrix for the bilinear form

a(u,v) = / gradu-gradvdx u,v € HY(Q),
o)

where () is the interior of the polygon. We assume that the standard tent function basis of S? (M) is
used and that their numbering starts with the central node and then continues counterclockwise through
the corners of the polygon.

Hint. The formula Eq. (2.4.5.8) can be used.

This list of review questions may not be complete. Additional review questions may be
provided in the lecture document.

