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Prerequisites.
e Weak formulation of linear second-order elliptic BVP
e Understanding of Galerkin discretization
Dependency. Requires [Lecture —153 and [Lecture — Section 2.2]. Familiarity with [Lecture — Sec-

tion 2.3 is beneficial.

g
[ A triangulation M of () satisfies

(iy M = {K,-},-Ail, M € IN, K; = open triangle
(i) disjointinteriors: i ## ] = KN K; = &
M

(iii) tiling/partition property:” | | K; = O
i=1
(iv) intersection K; N Kj, i # j,
is — either @
— or an edge of both triangles
— or a vertex of both triangles

c Note: Possible minor mismatch of video and tablet notes!

[Corrections and updates can be incorporated into tablet notes only]




EXAMPLE 2.4.1.4 (Internal array representation of 2D triangular mesh) We make explicit the contents
of the Coordinates and Elements matrices, data members of TriaMesh2D, for the special triangulation
of the square () =| — 1, 1[? drawn in Fig. 52.

(—1,1) O (1,1)

Ol .
i (xi)1 (x)2 K,- Vertex indices
1 - 1 1 |1 2 9
2 -1 0 2 |2 5 9
3| -1 -1 3|5 8 9
@ @ 41 0 -1 4 |5 7 8
5|1 0 0 5 3 4 2
6 1 -1 6 |4 5 2
7 1 0 714 7 5
8| 1 1 8 |4 6 7
e P Matrix Coordinates Matrix Elements
(—1,—1) @ (1/_1)

212, Lincar Einile Element 7@;{(@ a

§ 27 / ) | 5 : : 1D linear finite element trial space on mesh M :=

R Z( 4@ ‘ I {]xj_pxj[: j=l,...,M} OfQ:z]a,b[C R:
ola 1t | .

Molations : M = Lk, ., Kk, ], Me
nodrs VM) = { x* __, x"5 WA

/ij fWL/)/]?( f_{ virtual ~TriaMesh2D(void) {}
WV'(@( (/’WMC@ Full 1D linear finite element space on mesh M :=
// R iev di f v 1 f tri 1 W f 3x2 P .
mzttili e Coor nates o ertices o a riangies as rows o a {]x]_lll][. ] — 1’...,M} of ]a,b[c R'

10 TriGeo_t getVtCoords(std::size_t) const;

: 0 —

é ,,7 _ {'{(f | C++M0 code 2.4.1.2: Class handling planar triangular mesh = GITLAB . . | | 81,0<M) =

2 |// Matrix containing vertex coordinates of a triangle i i i I; i ; vE CO([ﬂ,b])I v|[x,;1,x,‘] Iinear,

1 s lusing TriGeo_t = Eigen::Matrix<double, 2, 3>; x X X . i . _

Dﬂt{ﬂ S ;’TU%/K‘S y + | struct TriaMesh2D { a ) 3 b/ i=1,...,Mu()=00b)=0

5 //' Constructor: reads {nesh data from file, whose name is passed ﬂ function € S?O(M) C -IL/D /Jﬂi /[)

6 TriaMesh2D(const std::string&); // 0 bc ( 1

T <
7 ' ' !
8

/k/xo(z _ 'Fy): . :2 // Data members describing geometry and topolgy /WM m/) S] (v\/l) = i E : E E
md’ X . ———>3 Eigen:: Matrix<double, Eigen::Dynamic, 2> Coordinates; —’>/'h éf (“7/% { v CO([[I b]) U|[ | linear Vi } (2422) | | | | 1
P XX T

° . . . H ‘l
F”’Wi N n I’\U 14 Eigen:: Matrix<int, Eigen::Dynamic, 3> Elements; . . !
\ . nade) . - (I X3 b =Xy
Coutelin 0(’WV1 5, (M) z /MF 4 i+ function € SY(M)
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Linear functions:
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pﬂmf%é o D

Vo = S?(J\/l) = {v e C'(Q):
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 ok(x) = ak + By %, i
VK € M: K ER,p Ry e K C\H (Q)

=
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| see Thm. 1.3.4.23
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Idea: define (?) basis function b},
x € V(M), by “nodal condi-
tions”

Jfy =x,

Gy e VM) {x). BH3D

Is this possible ?

41 “Visval provf #f existonce”
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<1 “Location” of nodal basis functions:
(mesh M — Fig. 49)

e, » — nodal basis functions of SY (M)

e — nodal basis functions of S (M)

2.1 Y 6707)% (Galitinn atinx
V

Notion 2.4.4.3.

A € K™" m,n € N, is sparse, if

nnz(A) :=#{(i,j) € {1,...,m Fx{1,...,n pra; #0} < mn.
A

I / /
s =
Recall ormuels Gv anbior o %ﬁ%%ié/m G =0

(A, = albl bl), 7640247
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a(u,v) = /(a(x) gradu) - grad v+ c(x)uvdx = /hvdS , u,0€H(Q). (2.4.4.1)
0

2

Nodes x;, x; € V(M)
not connected by an edge

o vO1<supp<b;;>msupp<b{,>>=o} S5 (A);=0.
-
Ao~ ovorlzp of sopports
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Triangular mesh
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Resulting sparsity pattern of Galerkin matrix
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The mesh M displayed beside contains a few hang-
ing nodes marked with e.

Sketch a triangulation (without hanging nodes) with
the same nodes as that mesh M.

Chop up a square QO C RR? into n? congruent small squares and create a triangular mesh M of Q) by

splitting each small square along parallel diagonals. What is dim S{(M) and dim S?/O(M) in terms of
n?

C:

Let M be a triangulation of a polygonal domain. Describe a modification of the space S?(M) of M-
piecewise linear continuous functions that yields a subspace S} ,(M) C S)(M) of maximal dimension
such that 87, (M) C Hj(Q2).

D -

Prove that the barycentric coordinate functions for any non-degenerate planar triangle K C IR? are linearly
independent.

£

For the domain and mesh from Question (Q2.4.6.13.B) determine the maximal number of non-zerp en-

tries of the Galerkin matrix obtained when discretizing (2.1.2.2) with trial and test space S?,O(M) (sharp
bound).

This list of review questions may not be complete. Additional review questions may be
provided in the lecture document.
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