@

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Course Video
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Methods
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Prerequisites.
¢ Calculus: polynomials and polynomial interpolation
o Galerkin discretization
Dependency. Relies on [Lecture — Section 2.2] and [Lecture — Section 2.5].
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Definition 2.6.1.1. Simplicial Lagrangian finite element spaces

The space of p-th degree Lagrangian finite element functions on simplicial mesh M is defined
as

Sp(M) :={v € C°(Q): vjx € Pp(K) VK e M}.
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We fix the set of interpolation nodes

N := V(M) U {midpoints of edges} ,
N ={py,..., pn} (ordered) .
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Global basis function for SS(M) associated
with a vertex




(local) interpolation nodes for S§(M )

(local) interpolation nodes for S (M)
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Another special type are tensor product meshes, also on r - 3&1 / [’
called grids > 41 bl(x) = (1—x1)(1—x2), K
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Definition 2.6.2.5. Tensor product Lagrangian finite element spaces

Space of p-th degree Lagrangian finite element functions on tensor product mesh M

Sy(M

) :={v e CQ): vx € Qu(K) VK € M}.
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EXAMPLE 2.6.2.7 (Quadratic tensor product Lagrangian finite elements) Consider the case p =

2,d = 2 for Def. 2.6.2.5:

Interpolation nodes for S (M) 4

= V(M) U {mldpomts ofgdges}

Note: number of mterpolatlon nodes belonglng to
one cell is

9 = dim Q> (R?) . c —+
-

1 ,ifj=1i,
0 else.

N =A{py....pn}: b{, € S3(M), b{,(P,’) = {
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Choice of interpolation nodes for tensor product Lagrangian finite elements of higher degree:
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Explain why the local shape functions
e for SY(M) on a triangular mesh (= the
barycentric coordinate function of Ex. 2.5.3.6)
e and those for S{(M) on a tensor-product
mesh as defined by (2.6.2.3)
remain valid local shape functions for the lowest de-
gree Lagrangian finite element space on the hybrid
mesh displayed beside.

3

Let M be a triangular mesh with £ (M) vertices, 1£(M ) edges, and §M cells. What is dim S}Q(,f\/l)
forp =1,2,37

For a triangular mesh M with V(M) vertices, £ (M) edges, and §. M cells give sharp upper bounds
for the number of non-zero entries of the Galerkin matrix arising from the finite element discretization of

ue H(Q): a(x)gradu -gradv + c(x)uvdx = vdx VYo e H(Q), (2.1.2.2)
Ja 8 5 Jo

with trial and test space S, (M), p = 1,2.
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Consider a tensor product mesh M of Q) :=]0, 1[?> with n € IN cells in each direction and the finite-
element space

Vo 1= {v € H)(Q): vjx €Ki (R?) VK € M} .

What is the dimension of this space?

[T1

Let M be a tensor product mesh of Q) :=]0,1[? and M a triangular mesh arising from M by splitting
each rectangular cell into two congruent triangles. Show that SY(M) # S)(M).

Express the local shape functions for linear Lagrangian finite elements on a triangle as linear combinations
of the quadratic local shape functions as given in

g = (202 — 1)z,
by = 4MAz,

b = 4A A5 .

by = (2A1 — 1)Aq,
by = (2A53 — 1)A5,
by = 4AzA3,

(2.6.1.6)

G

Characterize the space of gradients of P;,(IRZ) and QP(JRZ) as spaces of componentwise polynomial
vectorfields.
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We consider the bilinear form
For the hybrid mesh M displayed in Fig. 120 determine the dimensions of the finite element spaces

b(u,v) := [ (1+ [|x||) u(x)v(x) dS, (2.6.2.14) <0 o o=\ . ©0|x € Pi(K) Viriangles K € M
aé (i) ST(M) = {v €C(Q): v|lg € Q1(K) Vrectangles K € M [’

o Q0 <0 1
where 9} is the boundary of the domain sketched in Fig. 120. (i) Sgo(M) = S(M) N Hy(Q).

J

We perform the Galerkin discretization of

Writing M for the mesh drawn in Fig. 120, what is the
maximal number of nonzero entries of the Galerkin

o g - : ’ matrix arising from the finite element Galerkin dis- a(u,v) := /u(x)v(x) ds,
cretization of b(-, ) using S (M) equipped with the
standard nodal basis as trial and test space?
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where 9Q) is the boundary of the domain from Fig. 120, by means of the finite element space Sy (M)
equipped with the standard nodal basis. Here M is the hybrid mesh sketched in Fig. 120.
‘ Compute the element matrices for the two cells of the mesh of Fig. 12 whose vertices are the nodes with
, ' F{ 70? 0 the following numbers:
2 i ” ' 2 % (i) nodes 9, 1, 7, 8 (quadrilateral),

(ii) nodes 3, 11, 4 (triangle)
Any local numbering of the nodes can be used.




