ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Course Video

Section 2.7.6: Treatment of Essential Boundary
Conditions

Prof. R. Hiptmair, SAM, ETH Zurich

Date: February 24, 2019
(C) Seminar flr Angewandte Mathematik, ETH Zirich

Prerequisites.

¢ Calculus with matrices and vectors
Dependency. Requires knowledge about offset techniques [Lecture — § 1.4.1.9], [Lecture —
Rem. 2.3.3.15], Galerkin discretization Lecture — Section 2.2, and linear finite elements [Lecture —
Section 2.4].

c Note: Possible minor mismatch of video and tablet notes!
[Corrections and updates can be incorporated into tablet notes only]

Cinite Element Metids (FEM)

2. ? lmplzmenéa&on of FEM

276, Tieatment o0F Fesenpnld I%m;/ﬂy Crdieng

ue HY(Q) .
u=gond Jo

I

1—) Dinchit BlRs

k(x) grad u - grad vdy = / fodx Yo e H)(Q) . (1.8.0.5)
J0

T —div(x(x)gradu) =f inQ , u=g¢ ondQ,

allns space

Abehact LUP in V' on attine spacs

A

wé Vet \, o alu,v) = Ll) YVosi,

T olfoed fnchion

Wé\/o 5 d/W/7/>
= M_ ;/Mafw
—~ Rem 22|77

= Llv) ~alu,p) Yool

O

makibed b3 . onchoned 7

@ F5 C&m/é)(ﬂ[] 4@ Uneav FiZ Gut » —Rm 2335 JD - \/0,14 = SO/(/M)[) /7;([58)
Qp%fgl/? f ’ﬁ//(”ﬂ £ v (4,6] ,M/%)f/%za, Vh @

U (6) =y,
W, & D & 1A 1]
Gy = SO0, Vo= SEO) < Wl ot Seb gkl v

| — Linawy Mg/zmg/m FE |

To deal with the case of general Dirichlet boundary
conditions i 5 ! i
= A | i
u(a) =u, , u(b) = uy Ug <1 “Location” of nodal basis functions:
\ ! : (mesh M — Fig. 49)
we use a piecewise linear offset function > 1 1 i |
X1 X2 X3 o e, ® — nodal basis functions of SY (A1)
a 1
) . . . O
(1 — \7’_1_17) fa<x<x, H](] b0 e — nodal basis functions of Sy, (M)
b—x . up,h € a, ’
ugp(x) = < up(l— Jfxyo1<x<b, , (2.3.3.16)
0n(X) (1= F=) M-1S X< o, (a) = ta, ugp(b) = uy .
0 elsewhere, \/
//a,;) & }7

> mininel svpport OHseA @nchien JWW/&/Z ‘ adlw,p)
: ~ " T
&{’(Mﬂ7bh) # (7 NU}’I% (70 L :4/ M’4 w € HY(Q): /Qrc(x)gradw-gradvdx

—= 7 (1.8.05) & u=u+w, (2.7.6.2)
L—> %j > g/ 4 M%L??ﬁmlé [w% (0/77/09776%)% 0 4 /Q —x(x) grad up - grad v »@we H(Q),
SO
M © with offset function 1y € H'(Q)) satisfying / { up = g on 8QJ /6[#)

Lesson s Esenhal BDC com be bben b accovnt
by mooa@/;‘% S ey

Finite element offset functions

&

Idea (inspired by choice in 1D), Rem. 2.3.3.15):
use offset function 1y € Vj, := S)(M)
locally supported near the boundary :

use offset function in the span of global basis functions associated with
geometric entities on 9()

supp(u) C [J{K € M: KNaQ # @} . (2.7.6.4)

< Largest possible support of ug on a triangular
mesh.

For Vj, = S{(M) and Diricrlkit data ¢ € CY(00))
use i

g(x) by,

)z

xeV(M)NnoQd

Ug =

by = tent function associated with node x € V(M). -

[
'one
Ny

627 4.8 . %@@bﬂc (el

@Qh: {bh[}. .. /b[,/)y} 2 bwowo f//f/W/ :1-'%/)
B, = B, 0i b . b)Y 2 bavs sl 7 M)

Ag e RNVN = Galerkin matrix for discrete trial/test space Sy (M),
A € RMM = Galerkin matrix for discrete trial/test space Sy (M).
This gives rise to a block-partitioning of the Galerkin matrix A,
- i NM-N
[Ag | Agy] Aw= (a3, bi)) .y €R /
B A=|,7 AR (2.7.6.9)
[Aoa | Aan Agy = (a(bf, b;z)) IVIVEVESD
j=N+1,.,M—N

>

j,:ﬂ/}/;

7 My = 675/ y %?‘%/Xg)

= ﬂ/%}m/

w € H}(Q): o k(x) grad w - grad v dx

(2.7.6.2)
- / —x(x) grad up - gradv + fodx Yo € H)(Q),
o)

(18.05) & u=u+w,

with offset function 1y € H'(Q)) satisfying [Up = g on GQJ

" OfGet DPYP!
W, &

ol &Z(Wh,%‘> 9//%)“/(4&/077)0]) @777/%6[4%

\

b}j / L‘D Z,ﬂ/

@ Expand: W, >/ V. b v,
4>
?%%% into O-PUP :

2 a (b b,)\/
2=

= Lbf) - ZA//b,O,b
@ 7

Vi

Essonhad BDC in LFFH+ [8(3'776/3]

b\/ medt fcahion d{ 4

Nobe: Mo corhiyy of GSF must be anaus

template <typename SCALAR, typename SELECTOR,
typename RHSVECTOR>

void FixFlaggedSolutionCompAlt (SELECTOR &é&selectvals,

1f::assemble: :COOMatrix<SCALAR> &A, ﬁHSVECTOR &b) ;

oty + - Ags bty A
e

C++11 code 2.7.6.17: Transformation function (2.7.6.14) — (2.7.6.16) =* GITHUB

template <typename SCALAR, typename SELECTOR, typename RHSVECTOR>
void FixFlaggedSolutionCompAlt(SELECTOR &&selectvals , COOMatrix<SCALAR> &A,

1
2
3 RHSVECTOR &b) {
4 const If ::assemble ::size_type N(A.cols());
5 LF ASSERT MSG(A.rows() == N, "Matrix must be square!");
6 LF ASSERT MSG(N == b.size () ,"Mismatch N = " << N << " <—> b.size() = " <<
b.size());
7 // I: Set components of right-hand-side vector to prescribed values
s | for (If::assemble::gdof idx t k = 0; k < N; ++k) { | rﬁm»
9 const auto selval {selectvals (k)}; -——-> mw% W d
10 if (selval.first) b[k] = selval.second;
| Hhs wecky
12 // II: Set rows of the sparse matrix corresponding
13 // to the fixed solution components to zero

14 typename |f ::assemble :: COOMatrix<SCALAR> :: TripletVec ::iterator new_last =

15 std :: remove_if(

16 A.triplets () .begin(), A.triplets ().end(), W

17 [&fixed_comp_flags](S W
18 typename |If ::assemble :: COOMatrix<SCALAR>:: Triplet &triplet) { \ %

19 return (fixed_comp_flags[triplet.row()]);

2 1)

21 // Adjust size of triplet vector V%WM
2 A.triplets () .erase(new_last, A.triplets ().end());

23 // III: Add Unit diagonal entries corrresponding to fixed components

24 for (If::assemble::gdof_idx_t dofnum = 0; dofnum < N; ++dofnum) {

25 if (selectvals(dofnum).first) A.AddToEntry (dofnum, dofnum, 1.0);

2 11

® Revwew qwcm'fv'ons LA 6L C

On a polyognally bounded domain Q) C IR? we solve the Dirichlet problem

A What (s tHhe d%@é fonchon /6&%/3/2{% Au=0in O, u=g on 0,
for Mmdéa'mgp onenhecl dey odihons 2 | it g e C00),

8 : w/W/L(LS L (W%% W &/7%‘0V7 ZZMZ We ugeafinite element Galerkin discretization based
‘ P o SY(M), where M is the triangul hd

Cé&ﬁmﬁé@f%/ A /7(){‘-@ :p[/,)&/)/&f WW@ M gr;Sidle(.), where is the triangular mesh drawn

DO%W b>/ meovy”) /% 7MWW MfWW We employ the elimination of essential boundary

conditions based on the offset function technique.

) 7
ﬁm& @&mé / \SW 6{2 /MJ 2 How many entries of the right-hand side vector of the
finite-element linear system of equations will change,
when the data ¢ change?

Sketch the implementation of a class

class SolvelaplaceBVP {

public:
SolveLaplaceBVP (std::shared_ptr<const 1f::assemble::DofHandler>
dofh_p);
~SolveLaplaceBVP () = default;

template <typename FUNCTOR>
Eigen::VectorXd solveLaplaceBVP (FUNCTOR &&g) const;
private:

}i
The constructor takes a shared pointer to a If::assemble::DofHandler object associated belonging to
the finite element space S?(M). The method solveLaplaceBVP () takes a functor argument of type
std: : function<double (Eigen: :Vector2D) >, which supplies the boundary data g. It is supposed

to return the basis expansion coefficient vector (with respect to the standard tent function basis) of the finite
element solution € SY(M) of the Dirichlet boundary value problem

—AM =0 in Q , u=g on 9.

This list of review questions may not be complete. Additional review questions may be
provided in the lecture document.

NumPDE@ETHZ

