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Section 3.2: Empirical (Asymptotic)
Convergence of FEM
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(C) Seminar flir Angewandte Mathematik, ETH Zirich

Prerequisites.

¢ A clear idea about function spaces and associated norms

¢ Landau-O notation
Dependency. Lagrangian finite element methods [Lecture — Section 2.6], norms in Sobolev spaces
[Lecture — Section 1.3], and numerical quadrature [Lecture — Section 2.7.5.2].

2 Note: Possible minor mismatch of video and tablet notes!

[Corrections and updates can be incorporated into tablet notes only]
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Convergence: asymptotic perspective

Crucial: our notion of convergence is asymptotic !

sequence of discrete models = sequence of approximate solutions (u,(,') )ieN

\ = study sequence (\|tz,(li) —U)jen @i — 00

created by variation of a discretization parameter.
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Definition 3.2.1.4. Mesh width

Given a mesh M = {K}, its mesh width /1,4 is defined as

hag := max{diam K: K € M} , diamK :=max{|p—q|:p,q € K} .
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Definition 3.2.2.1. Types of convergence —,

|lu —un|| =O(N~%),a >0

|| —un|| = O(exp( %)), withy,6 >0 :<= exponential convergence
(asymptotically for N — c0)

<= algebraic convergence with rate a
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/
+ domain Q2 =|0,1], B> unique solution
. 2
Mode U preblam - =+ »n G _du
\w P W " d/kl + ObE: a2 8" = ) ) , u(x) =sin2mx?). 0<x<1.
. 4+ load g(x) = —47m(cos(2mx*) — 4mx* sin(27rx*)),
2 = % o Q ,/(2 4 boundary values 1, = u;, = 0. (“manufactured solution”)
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O ’_' . % . Discretization errors with mq:ecttoH' semi-norm
Exp 3237, 2D, S, p=-T,3 e ————
Settlng. O =]011[21f(x11x2) — 271.2 Sin(ﬂx])Sin(ﬂ'xz), xE Q,g = O e S S St S - SO PP
> Smooth solution u(x,y) = sin(mx) sin(7my).

e Galerkin finite element discretization based on triangular meshes and
~ linear Lagrangian finite elements, Vo y = S} (M) C H}(Q) (— Section 2.4),

— quadratic Lagrangian finite elements, Vo n = S3,(M) C Hy(Q) (— Ex. 2.6.1.2),
e quadrature rule (2.7.5.37) for assembly of local load vectors (— Section 2.7.5),
Monitored: H'(())-semi-norm (— Def. 1.3.4.3) of the Galerkin discretization error u — uy
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You forget the call to std::sqrt () when computing approximations of |[u —upl[;2) and
|t — uy| Hi(Q) U — Up @ finite-element Galerkin discretization error for a second-order elliptic BVP. What
will be the impact on observed rates of algebraic convergence?

i

In a numerical experiment we observe the following asymptotic convergence for the finite-element solu-
tions of a second-order elliptic BVP on Q) C IR? and h-refinement (/1 ,; — 0)

[ —uplpqy = Otham) |l —upll 2y = O(y) -

What asymptotic convergence for /1 ,, — 0 do you predict for the error norm ||z — u;,| 12(00)?

Hint. You can refer the the following result
Theorem 1.9.0.10. Multiplicative trace inequality

3C =C(Q) > 0: ||”||%2(a(2) < C““”LZ(Q) : ||”||H1(Q) Vu € HI(Q) -

C

The following table list error norms recorded for a sequence of finite element solutions 1, € H'(Q)) be-
longing to finite element spaces with dimensions N,. From the data predict qualitatively and quantitatively

the asymptotic convergence for Ny — co.

N 8 16 321 64 128 256 512 1024
=11y, | 4.98e01 | 4.08e-01 | 3.23e-01 | 2.576-01 | 2.01e-01 | 1.53e-01 | 1.26e-01 | 1.02e-01
[ —ul[12( | 3.57€01 | 255e-01 | 1.79e-01 | 1.24e-01 | 8.89¢-02 | 6.156-02 | 4.49¢-02 | 3.05e-02

D

We solve a second-order elliptic BVP based on the Lagrangian finite-element spaces S? (M) and
SY(My), and on a sequence of triangular meshes (M()%ZO obtained by uniform regular refinement.
We get the finite element Galerkin solutions 1) € S{(M,) and u? € SJ(M;), £ =0,...,L.

How will the presence of a singularity of grad u, u € H 1(Q)) the exact solution, manifest itself in the
asymptotic behavior of the L2(())- and H'(Q))-norms of the finite element discretization errors?

How should you read the following statement?
“Exponentially convergent Galerkin schemes are better than algebraically convergent meth-

ods”

This list of review questions may not be complete. Additional review questions may be
provided in the lecture document.
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