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Prerequisites.
¢ Knowledge of polynomial interpolation in 1D and related error estimates
Dependency. [Lecture — Section 2.6 and [Lecture — Section 3.1]

C Note: Possible minor mismatch of video and tablet notes!

[Corrections and updates can be incorporated into tablet notes only]
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Given:
4+ polygonal domain Q) C R?

4 triangular mesh M of Q)
(— Def. 2.5.1.1)

Definition 3.3.2.1. Linear interpolation in 2D

The linear interpolation operator I : C°(C)) — S?(M) is defined by

€ SYM) , lhu(p)=u(p) YpeV(M).
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Lemma 3.3.2.18. Local interpolation error estimates for 2D linear interpolation
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For any triangle K and u € C*(K) the following holds

|lu— |1ll||%2(K) < %hi““DzuHF (3.3.2.13)
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[905/( 2 Hession 2L ¢

Il - //,9 2 Fpbenive newy

(3.3.2.17)

NVEW : shype of K enter o

Definition 3.3.2.20. Shape regularity measure

For a simplex K € IR? we define its shape rg¢gularity measure as the ratio
ok = hi - |K|,
and the shape regularity measure of a simplicial mesh M = {K}

M = Mmax pg .
P KE,MP
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For triangle K: pk large < K 'distorted” < K has small angles

N\ AP

P small Pk large Pk large

Theorem 3.3.2.21. Error estimate for piecewise linear interpolation

For any u € C%(Q) and 2D piecewise linear interpolation |1 : C°(Q) — S (M), M a triangular
mesh, holds

e = hull2(q) < \/g hg‘/‘”HDZuHP ()’

Irad(u — 1) < /3o @AMAR] 224

Fllrz(a) -’

where h g denotes the mesh width (— Def. 3.2.1.4) and paq the shape regularity measure (—
Def. 3.3.2.20) of M.
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@ 3 g 67 77}( 5@&0@7) M % F() f?&/?ﬁ N 5/0454 Corollary 3.3.3.4. Error estimate for piecewise linear interpolation in 2D

0{ 07 Under the assumptions/with notations of Thm. 3.3.2.21
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The m-th order Sobolev norm, m € Ny, for u : QO < IR? — R (sufficiently smooth) is defined by m o ' '
e H"2) aty pzm;@ lummaln aboeef Hhe
1)) 2 / |ID*u|?dx, where D%u := ) , :
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Sobolev space H™@Qp:= {v: Q — R: ||| gmq) < oo} .
Theorem 3.3.3.8. Sobolev embedding theorem
K 0 / 2 3
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The m-th order Sobolev semi-norm, m € N, for sufficiently smooth u : () +— IR is defined by L?( n)

iy = Y /QlD“u|2dx. ol pésg(b& { m

a€N? |a|=m

Definition 3.3.3.3. Higher order Sobolev semi-norms
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A

What is meant by the following statement?
The nodal interpolation operator onto SS(M), M a triangular mesh of some polygonal do-
main (), is purely local.

B

If M’ has been created by regular refinement of a triangular mesh M, how are shape-regularity measures
P and P50 related?

Definition . Shape regularity measure

For a simplex K € R? we define its shape regularity measure as the ratio

ok :=h% . |K|,] hg := diam(K) ,
and the shape regularity measure of a simplicial mesh M = {K} as

v = max Ok .
PM KeMPK

C
For which exponents a > 0 does the function x — x* belong to the Sobolev space H"(]0, 1[), m € IN?

Hint. Since the function belongs to C*(]0, 1[), it is sufficient to show that the improper integral defining
its H"(]0, 1[)-norm has a finite value.

D

Characterize the set of functions
Z = {U € HP(Q) . |U‘HP(Q) B O} .

Discuss the implications of your insights for the following theorem.
Theorem 3.3.3.4. Error estimate for piecewise linear interpolation in 2D

Under the assumptions/with notations of Thm. 3.3.2.21

312
|u — I1u||L2(Q) < \/; hM|”|H2(Q) ’
<

Yu € H>(Q).

3
‘u = Ilu|H1(Q) \/ 723 PM h;Mlu‘Hz(Q) Z

This list of review questions may not be complete. Additional review questions may be
provided in the lecture document.
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