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New twist: Now we are interested mainly/only in the number F(u), where

F:Vp—R is a given output functional.

Mathematical terminology: functional = mapping from a function space into R
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Assumption 3.6.1.3. Linearity of output functional

The output functional F is a linear form (— Def. 0.2.1.7) on V}

Assumption 3.6.1.4. Continuity of output functional — Def.

The output functional is continuous w.r.t. the energy norm in the sense that

C; > 0: |F(o)| < Cyllo

Yoel,.
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We consider a simple non-dimensional heat conduction model (— Section 1.6), scaled heat conductivity
k = 1, on the domain () :]0,1[2, with fixed temperature 1 = 0 on 0():

—Au=f inQQ , u=0 ond).

We choose the heat source functio f(x,y) = 27t% sin(7tx) sin(7ry), [‘} € (), such that we obtain the

Y
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exact olution u(x,y) = sin(7tx)sin(7ry). We are interested in the

1
mean temperature:  F(u) := al / udx .
Jo

Details of finite element Galerkin discretization:
e Sequence of triangular meshes M created by regular refinement.
e Galerkin discretization: (I) V), := S?’O(M) (linear Lagrangian finite elements — Section 2.4), PJ

() Vo, = SS,O(M) (quadratic Lagrangian finite elements — Ex. 2.6.1.2).
e Quadrature rule (2.7.5.37) of order 6 for assembly of right hand side vector =

(more than sufficiently accurate according to the guidelines of Section 3.5.1)
Ex pected |I|
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Errors between the mean and exact solution
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Theorem 3.6.1.7. Duality estimate for linear functional output

Define the dual solution gr € Vy to F as solution of the dual variational problem

gr € Vo: a(v,gr) = F(v) Vve V.

Then

|F(u) — F(uy)| < |lu— u,|| . inf e - u,n (3.6.1.8)
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Theorem 3.4.0.10. Elliptic lifting theorem on convex domains

If Q C RYconvex,u € H{(Q), Au € L2(Q) = u € H*(Q).
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Theorem 3.3.5.6. Best approximation error estimates for Lagrangian finite elements

Let Q) c RY, d = 1,2,3, be a bounded polygonal/polyhedral domain equipped with a mesh M
consisting of simplices or parallelepipeds. Then, for each k € IN, there is a constant C > 0

depending only on k and the shape regularity measure p », such that

v min{p+1,k} -1 .

inf |[u— vyl oy < C<—> | u|| g Yu € H(Q)) . (3.3.5.7)
0,ESH(M) ) ) H(@)
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Prove that the “mean temperature functional”
1
F:H(Q) - R , v~ F(v) = W/ o(x) dx
0

is continuous/bounded.
Definition

. Continuity of a

Consider a normed vector space Vj with norm ||-||. A linear form ¢ : Vj — R (— Def. 0.3.1.4) is
continuous or bounded on V), if
JC > 0:

[£(v)] < Cl[o|| YoeVo.

A bilinear form a : V x Vp — IR (— Def. 0.3.1.4) on V) is continuous, if
K > 0:

la(u,v)| < K|[u||||v|| Yu,veVy.

.

Let u € V| denote that solution of linear variational problem

ueVy: a(u,v)=4Lv) Yoel, (2.2.0.2)

posed on a vector space Vj, and with an s.p.d. bilinear form a : V x Vjj — IR inducing the energy norm
|l £ : Vo — R alinear functional, continuous/bounded with respect to ||-|| .
Write F : V) — IR for a linear functional that is continuous/bounded with respect to ||-||,, and u;, € V),
for the Galerkin solution of (2.2.0.2), V},;, C Vj some subspace
Give a three-line proof of the following duality estimate.

Theorem 3.6.1.7. Duality estimate for linear functional output

Define the dual solution gr € V to F as solution of the dual variational problem

gr € Vo: a(v,gp)=F(v) YoeV,.

Then

[F(u) = Fu)| < llu—wl, inf llge = o, (3.6.3.14
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