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2 Note: Possible minor mismatch of video and tablet notes!

[Corrections and updates can be incorporated into tablet notes only]
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3.6. FEM: Doality Techniguces
for Erdr Esﬁmg{m

3.6.2. Case wa%t: ;Zzshg%a{fgrﬂdmy

Model problem (process engineering):

Long pipe carrying turbulent flow of coolant (water)

Q) C IR?: cross-section of pipe
x =4 : (scaled) heat conductivity of pipe material
(assumed homogeneous, k¥ = const)

Assumption: Constant temperatures u,, , u; at out-
er/inner wall ', I'; of pipe

Task: Compute heat flow pipe — water

Mathematical model: elliptic boundary value for stationary heat conduction (— Section 1.6)

—div(kgradu) =0 inQ) , u=uy only, x€ {i0}. (3.6.2.1)
Heat flux through T;:  J(u) := / k gradu-ndS. (3.6.2.2)
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4 Setting: model problem “heat flux pipe — water”, see (3.6.2.1) and Fig. 213.
ol
4 Linear output functional from (3.6.2.2) L—> (J/,M) - OZ/ML. 7 / — O(bm )

+ Domain Q= BRL)(O) \ BR:(O) = {X S IRZ: Ri < ’Xl < RO} with RO =l and Ri - 1/2 Convergence: standard boundary flux, linear FE
4+ Dirichlet boundary data u; = 60°C on I';, u, = 10°C on I', heat source f = 0, heat conductivity | ¢ . A : - e

k=1.
> Exact solution: u(r, ¢) = Cy In(r) + C, with C1 := (4, —u;)/(InR; —InR,),
> Exact heat flux: | = 2k Cy, Cy := (InRyu; —InRjuy) /(In R; — InR,).
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Unstructured triangular meshes for (O = B1(0) \ By,2(0) (two coarsest specimens). § 3 6 Q (f ‘

e Sequences of unstructured triangular meshes M obtained by regular refinement of coarse mesh

(from grid generator). /Mg%; J//p) =, fj{ﬁ&/gj 1) df (L m% (ﬂ?/]W&'ZW

o Galerkin FE discretization based on Vp, := 87y (M).

T.
¢ Approximate evaluation of a(uy, vy ), f(vn) by six point quadrature rule (2.7.5.37) (“overkill quadra- m Y ’L(/M< ) &7 / ) // a2
ture”, see Section 3.5.1) ! / y/4
¢ Approximate evaluation of [(u ) by 4 point Gauss-Legendre quadrature rule on boundary edges of ZU@ /44 H/)/ D & H ( 52) ‘ % / D ) — o0
M.

¢ Linear boundary approximation (circle replaced by polygon).
e Recorded: errors |J(u) — J(uy)| on sequence of meshes.
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Trck - YQ@/JZW } with cotynuens }%1 = K P
e Galerkin FE discretization based on V), := S} (M) or V ;, := 85 ((M).

. : g X , :

SW& 6/(1/)?, % /M ) - % (M ) e Approximate evaluation of |*(uy) by six point quadrature rule (2.7.5.37) (“overkill quadrature”, see
Section 3.5.1) .

e Cut-off function with linear decay in radial direction: ¥(x) = 2||x|| — 1, ¥ € C®(Q)).

@:(gp[( W/f)ﬁ)/) y{ EVP e Recorded: outputerrors |J(u) — J(uy)| and |J(u) — J* (uyn)]|.
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We consider the Galerkin discretization of the Dirichlet BVP

avSaey e

—AM=f inQQ , u=0 ondQ2,

Q =10, 1[2, by means of degree-2 Lagrangian finite elements, V), = Sg (M), on sequences of triangular
meshes created by uniform regular refinement.

For the “mean temperature functional”

F:HY(Q) - R

1
- ﬁ/ﬂv(x) dx

determine the rate of algebraic convergence F(uj,) — F(u) in terms of meshwidth /1, — 0, when
uy € SY(M) is the finite-element solution.

Hint (— Rem. 3.6.1.11): If Q =]0,1[%, u € HI(Q)
is a constant C > 0 such that ||| ;3 < C||f|| g1y

—Au = f, f € H(Q), then u € H*>(Q) and there

B

We consider the Dirichlet boundary value problem
—Au=0 inQQ , u=g ondQ},

for given bundary data ¢ € C°(9Q)) and on a domain Q0 C IR?. In Exp. 3.6.2.7 we studied the regularized
boundary flux functional

J (u) = /Qgradu-gradtpdx Y € H(Q) .

State the boundary value problem that is solved by the dual solution ¢ induced by this regularized output
functional J* in strong (PDE) form.

C - »»>/W&W nﬁ?Z)

If in Exp. 3.6.2.7 we change the computational domain from an annulus to () :=
ulate how this would affect the convergence rates observed in Fig. 235.
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The components of the linear variational problem
ueVp: a(u,v)=£L(v) Yoel, (2.2.0.2)

on the vector space V), are supposed to satisfies the “usual assumptions”. Thus, it possesses a unique
solution u € V) for every (||-||,-continuous) right-hand-side linear functional /. We perform its Galerkin
discretization based on a subspace Vj ;, C Vj.

For a continuous output functional F : V) — IR let gr j, be the Galerkin solution of (2.2.0.2) with / replaced
with F. What does £(gr j,) give you?

ue H(Q): a(u,v) = /ka(x)v(x)dx Yo e H(Q), (3.6.3.15)

be the variational formulation of a second-order elliptic boundary value problem,
a: H'(Q) x H'(Q)) — R an symmetric positive definite bilinear form, f, € L?(Q).

We are interested in approximately evaluating F(u; ), u; the solution of (3.6.3.15), for a bounded /in-
ear functional F: H'(Q) — R and for many different and unrelated source functions f, € L*(Q)),
k=1,...,m, m € IN. We rely on finite element Galerkin approximation based on piecewise linear La-
grangian finite elements, V;;, = SY(M), producing the Galerkin solutions 1y ;, € S{(M).

Outline an algorithm for computing F(uy ), k = 1,...,m, which involves a minimal number of solves of
sparse linear systems of equations.

This list of review questions may not be complete. Additional review questions may be
provided in the lecture document.
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