

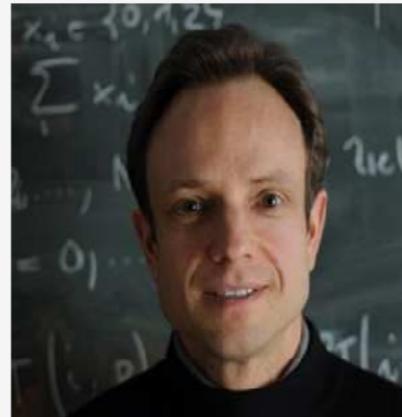
Course Video

Section 3.6.2: Case Study: Computation of Boundary Fluxes with FEM

Prof. R. Hiptmair, SAM, ETH Zurich

Date: March 21, 2019

(C) Seminar für Angewandte Mathematik, ETH Zürich



Dependency. [Lecture → Section 3.6.1]

Note: Possible minor *mismatch of video and tablet notes!*

[Corrections and updates can be incorporated into tablet notes only]

III FEM: Convergence & Accuracy

3.6. FEM: Duality Techniques for Error Estimation

3.6.2. Case Study: Computation of Boundary Fluxes with FEM

Model problem (process engineering):

Long pipe carrying turbulent flow of coolant (water)

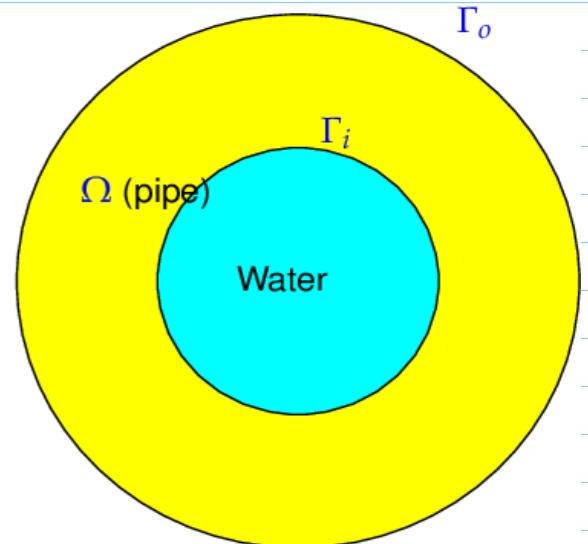
 $\Omega \subset \mathbb{R}^2$: cross-section of pipe $\kappa \approx 1$: (scaled) heat conductivity of pipe material
(assumed homogeneous, $\kappa = \text{const}$)Assumption: Constant temperatures u_o, u_i at outer/inner wall Γ_o, Γ_i of pipe

Task: Compute heat flow pipe → water

Mathematical model: elliptic boundary value for stationary heat conduction (→ Section 1.6)

$$-\operatorname{div}(\kappa \operatorname{grad} u) = 0 \quad \text{in } \Omega, \quad u = u_x \quad \text{on } \Gamma_x, \quad x \in \{i, o\}. \quad (3.6.2.1)$$

$$\text{Heat flux through } \Gamma_i: \quad J(u) := \int_{\Gamma_i} \kappa \operatorname{grad} u \cdot \mathbf{n} \, dS. \quad (3.6.2.2)$$



② Exp. 3.6.2.3 :

◆ Setting: model problem "heat flux pipe → water", see (3.6.2.1) and Fig. 213.

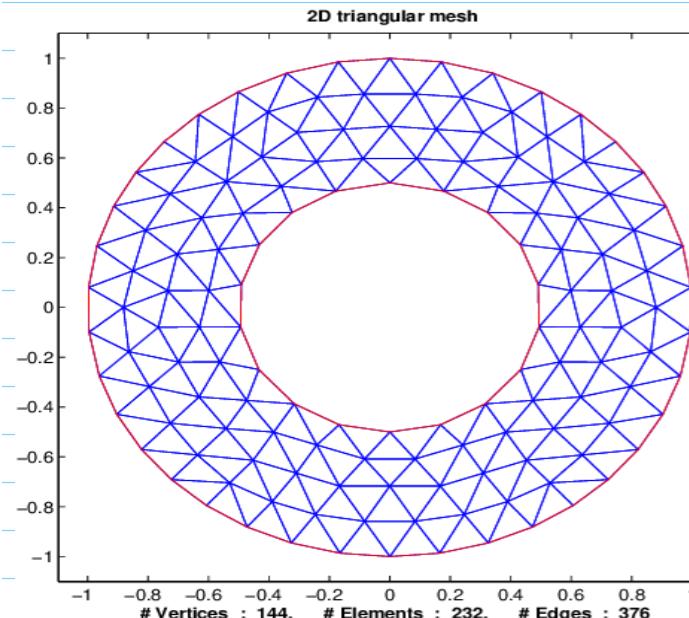
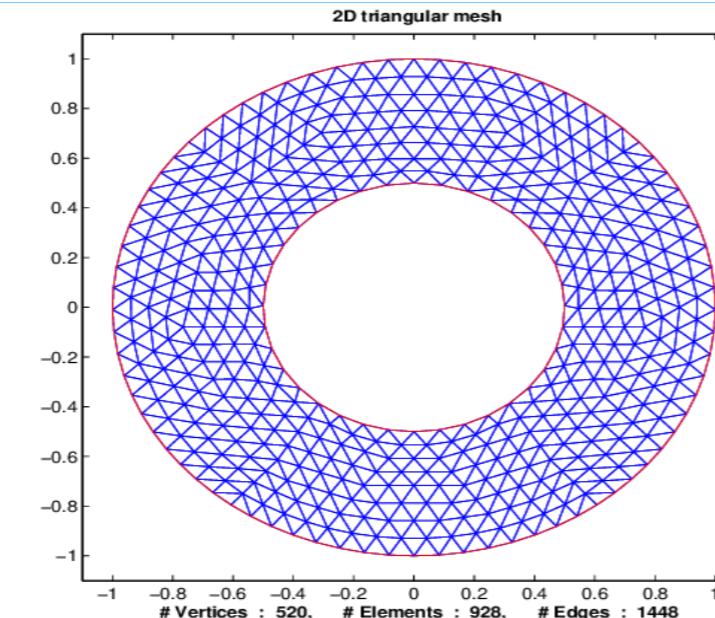
◆ Linear output functional from (3.6.2.2)

◆ Domain $\Omega = B_{R_o}(0) \setminus B_{R_i}(0) := \{x \in \mathbb{R}^2 : R_i < |x| < R_o\}$ with $R_o = 1$ and $R_i = 1/2$

◆ Dirichlet boundary data $u_i = 60^\circ\text{C}$ on Γ_i , $u_o = 10^\circ\text{C}$ on Γ_o , heat source $f \equiv 0$, heat conductivity $\kappa \equiv 1$.

➤ Exact solution: $u(r, \varphi) = C_1 \ln(r) + C_2$,

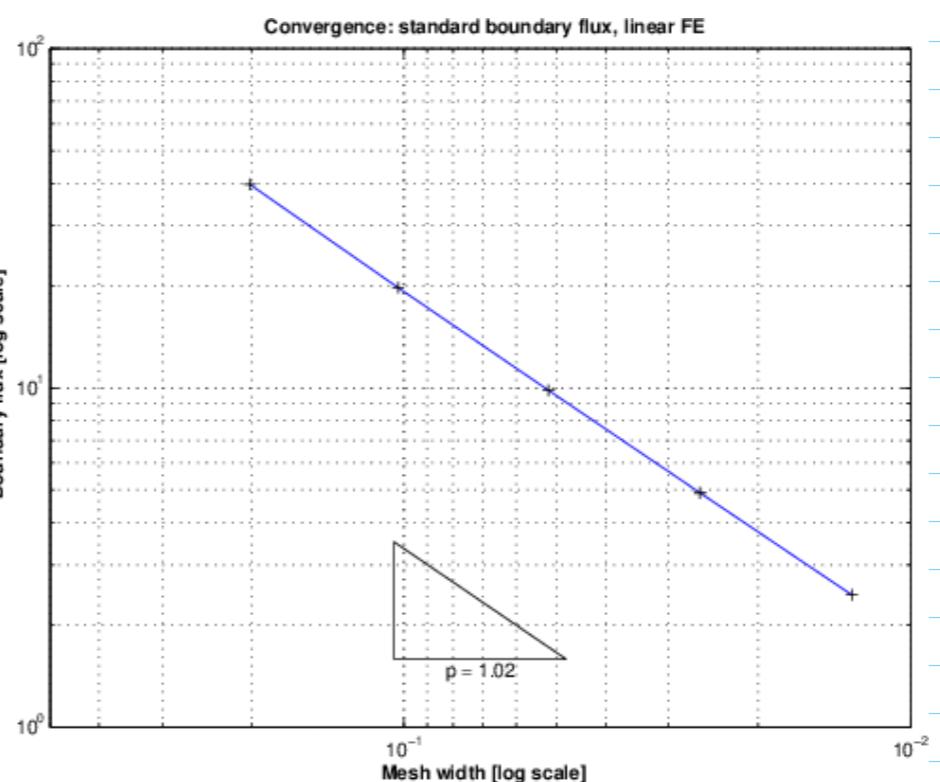
➤ Exact heat flux: $J = 2\pi\kappa C_1$,



Unstructured triangular meshes for $\Omega = B_1(0) \setminus B_{1/2}(0)$ (two coarsest specimens).

- Sequences of unstructured triangular meshes \mathcal{M} obtained by regular refinement of coarse mesh (from grid generator).
- Galerkin FE discretization based on $V_{0,h} := \mathcal{S}_{1,0}^0(\mathcal{M})$.
- Approximate evaluation of $a(u_N, v_N)$, $f(v_N)$ by six point quadrature rule (2.7.5.37) ("overkill quadrature", see Section 3.5.1)
- Approximate evaluation of $J(u_N)$ by 4 point Gauss-Legendre quadrature rule on boundary edges of \mathcal{M} .
- Linear boundary approximation (circle replaced by polygon).
- Recorded: errors $|J(u) - J(u_h)|$ on sequence of meshes.

Expect (by "duality estimates")
 $\Rightarrow |J(u) - J(u_h)| = O(h_m^2)$



Δ Output error,
alg. org.
Rate only 1

§ 3.6.2.4 :

Note: $J(v) = \int_{\Gamma_i} \text{grad } v \cdot n \, dS$ is *not continuous*
 $\text{wrt. to } \|\cdot\|_a$

We can find $v \in H^1(\Omega)$: " $J(v) = \infty$ "

③

Trick: Replace J with *continuous* $J^*: V_0 \rightarrow \mathbb{R}$
 satisfying $J(u) = J^*(u)$

exact solution of BVP

Intuition: J^* via *cut-off function*:

$$\psi \in H^1(\Omega), \psi_{|T_i} \equiv 1, \psi_{|T_0} \equiv 0$$

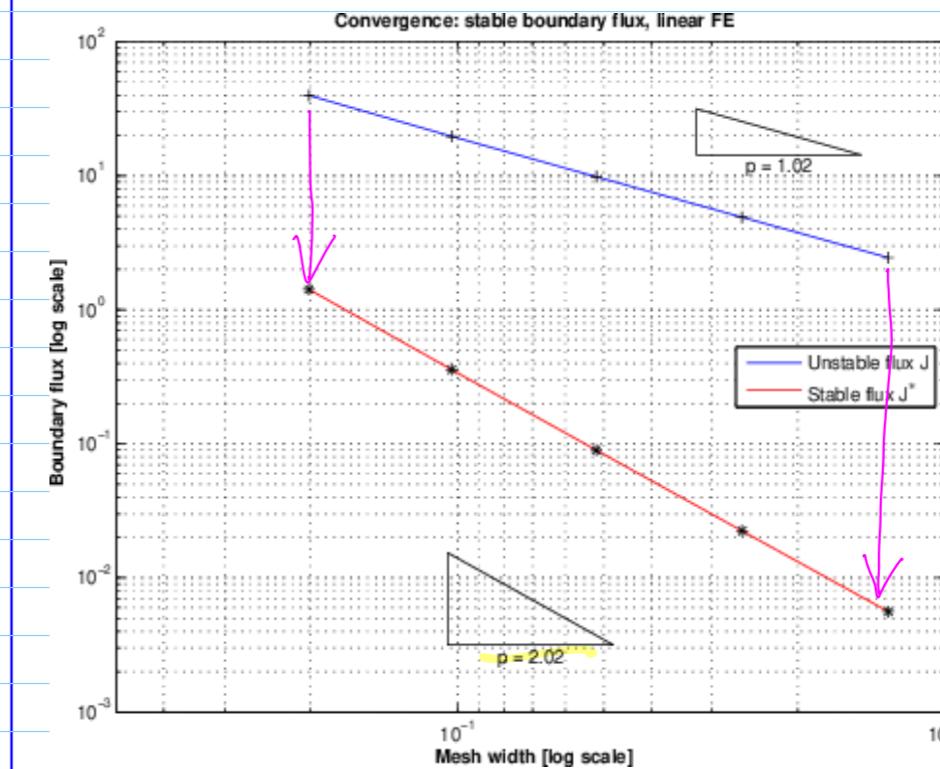
$$\begin{aligned} J(u) &= \int_{\Omega} \psi \cdot \mathbf{J} \mathbf{grad} u \cdot \mathbf{n} \, dS \\ \text{l.b.p.} &= \int_{\Omega} \mathbf{grad} \psi \cdot \mathbf{J} \mathbf{grad} u + \psi \operatorname{div}(\mathbf{J} \mathbf{grad} u) \, dx \end{aligned}$$

$$\triangleright J^*(v) = \int_{\Omega} \mathbf{J} \mathbf{grad} \psi \cdot \mathbf{grad} v \, dx$$

↳ *continuous on $H^1(\Omega)$*
 (by Cauchy-Schwarz)

Exp cont'd:

- Galerkin FE discretization based on $V_{0,h} := \mathcal{S}_{1,0}^0(\mathcal{M})$ or $V_{0,h} := \mathcal{S}_{2,0}^0(\mathcal{M})$.
- Approximate evaluation of $J^*(u_N)$ by six point quadrature rule (2.7.5.37) ("overkill quadrature", see Section 3.5.1)
- Cut-off function with linear decay in radial direction: $\psi(x) = 2\|x\| - 1, \psi \in C^\infty(\overline{\Omega})$.
- Recorded: output errors $|J(u) - J(u_h)|$ and $|J(u) - J^*(u_N)|$.



1 Output error for J^* , alg. org.

Rate 2

+ Substantially better error constants

④

Review questions 3.6.2.13 :

[Unless told otherwise, you should answer them without resorting to lecture documents]

A :

We consider the Galerkin discretization of the Dirichlet BVP

$$-\Delta u = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial\Omega,$$

$\Omega :=]0, 1[^2$, by means of degree-2 Lagrangian finite elements, $V_{0,h} = \mathcal{S}_2^0(\mathcal{M})$, on sequences of triangular meshes created by uniform regular refinement.

For the "mean temperature functional"

$$F: H^1(\Omega) \rightarrow \mathbb{R}, \quad v \mapsto \frac{1}{|\Omega|} \int_{\Omega} v(x) \, dx$$

determine the rate of algebraic convergence $F(u_h) \rightarrow F(u)$ in terms of meshwidth $h_{\mathcal{M}} \rightarrow 0$, when $u_h \in \mathcal{S}_2^0(\mathcal{M})$ is the finite-element solution.

Hint (\rightarrow **Rem. 3.6.1.11**): If $\Omega :=]0, 1[^2$, $u \in H_0^1(\Omega)$, $-\Delta u = f$, $f \in H^1(\Omega)$, then $u \in H^3(\Omega)$ and there is a constant $C > 0$ such that $\|u\|_{H^3(\Omega)} \leq C \|f\|_{H^1(\Omega)}$.

B :

We consider the Dirichlet boundary value problem

$$-\Delta u = 0 \quad \text{in } \Omega, \quad u = g \quad \text{on } \partial\Omega,$$

for given boundary data $g \in C^0(\partial\Omega)$ and on a domain $\Omega \subset \mathbb{R}^2$. In Exp. 3.6.2.7 we studied the regularized boundary flux functional

$$J^*(u) := \int_{\Omega} \mathbf{grad} u \cdot \mathbf{grad} \psi \, dx \quad \psi \in H^1(\Omega).$$

State the boundary value problem that is solved by the dual solution g_F induced by this regularized output functional J^* in strong (PDE) form.

C : \rightarrow Use lecture notes

If in **Exp. 3.6.2.7** we change the computational domain from an annulus to $\Omega :=]-1, 1[^2 \setminus [-\frac{1}{2}, \frac{1}{2}]^2$. Speculate how this would affect the convergence rates observed in Fig. 235.

5

D:

The components of the linear variational problem

$$u \in V_0: \quad a(u, v) = \ell(v) \quad \forall v \in V_0, \quad (2.2.0.2)$$

on the vector space V_0 , are supposed to satisfies the “usual assumptions”. Thus, it possesses a unique solution $u \in V_0$ for every ($\|\cdot\|_a$ -continuous) right-hand-side linear functional ℓ . We perform its Galerkin discretization based on a subspace $V_{0,h} \subset V_0$. For a continuous output functional $F: V_0 \rightarrow \mathbb{R}$ let $g_{F,h}$ be the Galerkin solution of (2.2.0.2) with ℓ replaced with F . What does $\ell(g_{F,h})$ give you?

E:

Let

$$u \in H^1(\Omega): \quad a(u, v) = \int_{\Omega} f_k(x) v(x) \, dx \quad \forall v \in H^1(\Omega), \quad (3.6.3.15)$$

be the variational formulation of a second-order elliptic boundary value problem, $a: H^1(\Omega) \times H^1(\Omega) \rightarrow \mathbb{R}$ an symmetric positive definite bilinear form, $f_k \in L^2(\Omega)$.

We are interested in approximately evaluating $F(u_k)$, u_k the solution of (3.6.3.15), for a bounded *linear functional* $F: H^1(\Omega) \rightarrow \mathbb{R}$ and for *many* different and unrelated source functions $f_k \in L^2(\Omega)$, $k = 1, \dots, m$, $m \in \mathbb{N}$. We rely on finite element Galerkin approximation based on piecewise linear Lagrangian finite elements, $V_{0,h} = \mathcal{S}_1^0(\mathcal{M})$, producing the Galerkin solutions $u_{k,h} \in \mathcal{S}_1^0(\mathcal{M})$.

Outline an algorithm for computing $F(u_{k,h})$, $k = 1, \dots, m$, which involves a minimal number of solves of sparse linear systems of equations.

This list of review questions may not be complete. Additional review questions may be provided in the lecture document.

