@

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Course Video

Section 3.8: Validation and Debugging of Finite
Element Codes

Prof. R. Hiptmair, SAM, ETH Zurich

Date: March 21, 2019
(C) Seminar fir Angewandte Mathematik, ETH Zirich

Dependency. |Lecture — Section 3.1] and [Lecture — Section 3.3.5]

ﬂ FE M : COHVK{Z{@ZK L Accum%
3¢ Vealidabon & %Uﬁi(zf of FE (s

(e baaed g0 Sy (M), p fxedl | fon lving

H'(Q
ue H(Q) /u(x)grad u-grad v +9q(x)uovdx + //\(x)uvdS(x)

u=gonlp 4 cd
m — /fvdx+ /hvdS(x) Vo € HL (Q), (3.8.0.2)
O Ty

paed H)ngh fonctio

For testing we will take for granted the availability of sequences of meshes My, M1, M, ..., whicﬁ\“-‘_

satisfy (see § 3.3.5.17 for related requirements)
1) that the meshwidth decreases geometrically: /1 = ghy_q for some 0 < g < 1, where hy is the
meshwidth of M;.
2) that all cells of M. have about the same size /.. This feature is called quasi-uniformity .
3) that the shape regularity measure (— Def. 3.3.2.20) all meshes stays below a common bound,
a property called uniform shape regularity. Y.
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‘ k Beware of polynomial exact solutions u € 7,,! (Why?) On the other hand, if the above test fails
Nk ~ KNk_] forsome ¥ >1 = Nk ~ K NQ . (3806) for non-polynomial 1, the next step should be to probe u € P, (Why?). m
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U Review quedbiens  3.60.13
A

What is the strong (PDE) for of the boundary value problem, whose weak form reads
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with the Sobolev space

H}D(Q) = {v e H'(Q):v =0on FD} , (3.8.0.3)

based on a partition 90 = T'p UTn UTk.
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We consider (3.8.0.2) fora =1,y =1, A = 1, and on the unit disk domain Q) := {x € R?: ||x| < 1}
and with I'g := 9Q).
(i) Is it possible to choose the data f and / such that 1(x) = cos(7/2||x||) will be the exact solution of
the variational problem. If not, suggests a modification that makes it possible.
(ii) Possibly under the modification found in [(i)], determine those functions f and / that will yield that
exact solution u(x) = cos(7/2||x||).
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In connection with the method of manufactured solutions you have seen the warning

VAN

Try to answer the “Whys”.

Beware of polynomial exact solutions u € P! (Why?) On the other hand, if the above test fails
for non-polynomial u, the next step should be to probe u € P, (Why?).

You have just finished the implementation of the LEHRFEM++-based C++ function

template <typename FUNC_ALPHA,
FUNC_BETA>
Eigen: :SparseMatrix<double> compGalerkinMatrix (
const 1f::assemble::DofHandler &lfe_dofh,
FUNC_ALPHA&& alpha, FUNC_GAMMA&& gamma, FUNC_BETA&& beta);

typename FUNC_GAMMA, typename

a(x)grad u(x) - grad v(x) + y(x) u(x) v(x) dx + B(x)u(x)v(x)dS(x) =

uc HY(Q): / o
/Qf(x)v(x) dx Yo e H'(Q),

@)

where &,7 : Q — R, B:9Q — R are bounded coefficient functions, and f € L2(Q). The use of the
standard nodal basis consisting of “tent functions” is assumed.

The argument 1 fe_dofh passes the loca-to-global index mapping for S{’(M) and the mesh M, while
alpha, gamma, and beta are functors for the coefficient functions x — a(x), x — y(x), andx — B(x).
Unfortunately, your implementation does not work properly. Sketch a debugging strategy based on the
policy of direct testing of bilinear forms.
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This list of review questions may not be complete. Additional review questions may be
provided in the lecture document.
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