

④

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

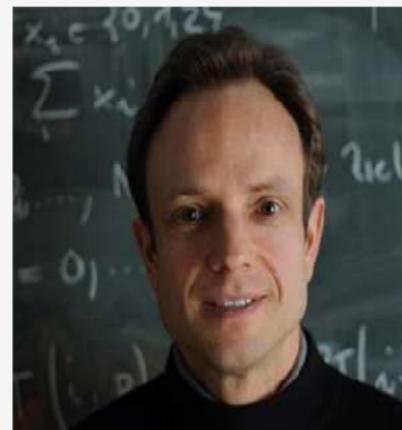
Course Video

Section 3.8: Validation and Debugging of Finite Element Codes

Prof. R. Hiptmair, SAM, ETH Zurich

Date: March 21, 2019

(C) Seminar für Angewandte Mathematik, ETH Zürich



Dependency. [Lecture → Section 3.1] and [Lecture → Section 3.3.5]

III FEM: Convergence & Accuracy

3.8 Validation & Debugging of FE Codes

Code based on $\mathcal{S}_p^0(\mathcal{M})$, p fixed, for solving

$$\begin{aligned}
 u \in H^1(\Omega) : \quad & \int_{\Omega} \alpha(x) \operatorname{grad} u \cdot \operatorname{grad} v + \gamma(x) u v \, dx + \int_{\Gamma_R} \lambda(x) u v \, dS(x) \\
 u = g \text{ on } \Gamma_D : \quad & = \int_{\Omega} f v \, dx + \int_{\Gamma_N} h v \, dS(x) \quad \forall v \in H_{\Gamma_D}^1(\Omega), \quad (3.8.0.2)
 \end{aligned}$$

passed through function

For testing we will take for granted the availability of sequences of meshes $\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \dots$, which satisfy (see § 3.3.5.17 for related requirements)

- 1) that the meshwidth decreases geometrically: $h_k = qh_{k-1}$ for some $0 < q < 1$, where h_k is the meshwidth of \mathcal{M}_k .
- 2) that all cells of \mathcal{M}_k have about the same size h_k . This feature is called **quasi-uniformity**.
- 3) that the shape regularity measure (\rightarrow Def. 3.3.2.20) all meshes stays below a common bound, a property called **uniform shape regularity**.

[Lf++ Mesh Hierarchy]

②

(A) Observe "asymptotic" (alg.) cvg: (§3.8.0.4)

From theory we know sharp bounds:

$$\|u - u_h\| \approx CN_K^{-\alpha}, N_K = \dim S_p(M_K)$$

$$N_k \approx \kappa N_{k-1} \text{ for some } \kappa > 1 \Rightarrow N_k \approx \kappa^k N_0. \quad (3.8.0.6)$$

$$\|u_k - u_{k-1}\| \leq \|u_k - u\| + \|u - u_{k-1}\| \approx CN_0 \left(\kappa^{-k\alpha} + \kappa^{-(k-1)\alpha} \right) \approx C' N_k^{-\alpha}, \quad (3.8.0.7)$$

↑ ?

$$\|u_k\| - \|u_{k-1}\| \leq \|u_k - u_{k-1}\| \stackrel{(3.8.0.7)}{\approx} CN_k^{-\alpha}. \quad (3.8.0.8)$$

(B) Method of manufactured solutions (§3.8.0.9)

- Pick polygonal $\Omega \subset \mathbb{R}^d$ (\rightarrow no bd. approx.)
- Use coefficients w/ simple analytic formulas
- Pick $u \in C^\infty(\bar{\Omega})$ \rightarrow set f, g, h accordingly
↳ simple analytic formula
- CODE: Solve "manufactured" BVP

CODE: Compute $\|u - u_K\|$ ["overk1U quad"]

• Estimate rate of alg. cvg.

Matches theoretical predictions?

Mismatch: Simplify: $\vec{T}_D^T = \vec{\partial} \vec{\Omega}, g_D = 0, \vec{\alpha}' = \vec{g}_D = 0$

Beware of polynomial exact solutions $u \in \mathcal{P}_p$! (Why?) On the other hand, if the above test fails for non-polynomial u , the next step should be to probe $u \in \mathcal{P}_p$ (Why?).

[If $u \in \mathcal{P}_p(M) \Rightarrow u = u_h$]

(C) Direct testing H^1 -continuous (bi-) linear forms: (§3.8.0.10)

Goal: Validate Galerkin matrix $B_{\mathcal{G}_K}$ a symmetric bilinear form $b(\cdot, \cdot)$ on $S_p^0(M)$

- Use a simple polygonal/circular Ω
- Choose $w \in C^1(\bar{\Omega})$: analytic formula
- Compute $b(w, w)$ [exactly by computer algebra]
- CODE: Compute $b(I_p w, I_p w)$ on M_1, M_2, \dots, M_K
↳ nodal interpolant $\in S_p^0(M)$

$$b(I_p w, I_p w) = \vec{V}^T \vec{B} \vec{V}, \vec{V} \stackrel{\text{coefficient vector for } I_p w}{=} \vec{V}$$

③ bilinearly & symmetry

$$\begin{aligned}
 & b(w, w) - \vec{v}_k^\top \mathbf{B}_k \vec{v}_k = b(w, w) - b(l_k w, l_k w) = b(w + l_k w, w - l_k w) \\
 & \underbrace{b(w, w) - \vec{v}_k^\top \mathbf{B}_k \vec{v}_k}_{\text{known}} \xrightarrow{(3.8.0.12)} \leq C_c \|w + l_k w\|_{H^1(\Omega)} \|w - l_k w\|_{H^1(\Omega)} \quad \checkmark \\
 & \text{continuity} \quad \leq C_c \|w\|_{H^1(\Omega)} \left(1 + Ch_k^p \|w\|_{H^{p+1}(\Omega)} \right) \left(Ch_k^p \|w\|_{H^{p+1}(\Omega)} \right) = O(h_k^p) . \\
 & \quad \text{known asymptotic behavior}
 \end{aligned}$$

④ Review questions 3.8.0.13 :

A :

What is the strong (PDE) for of the boundary value problem, whose weak form reads

$$\begin{aligned} u \in H^1(\Omega) : \int_{\Omega} \alpha(x) \mathbf{grad} u \cdot \mathbf{grad} v + \gamma(x) u v \, dx + \int_{\Gamma_R} \lambda(x) u v \, dS(x) \\ = \int_{\Omega} f v \, dx + \int_{\Gamma_N} h v \, dS(x) \quad \forall v \in H_{\Gamma_D}^1(\Omega), \quad (3.8.0.2) \end{aligned}$$

with the Sobolev space

$$H_{\Gamma_D}^1(\Omega) := \left\{ v \in H^1(\Omega) : v = 0 \text{ on } \Gamma_D \right\}, \quad (3.8.0.3)$$

based on a partition $\partial\Omega = \bar{\Gamma}_D \cup \bar{\Gamma}_N \cup \Gamma_R$.

B :

We consider (3.8.0.2) for $\alpha \equiv \mathbf{I}$, $\gamma \equiv 1$, $\lambda \equiv 1$, and on the unit disk domain $\Omega := \{x \in \mathbb{R}^2 : \|x\| < 1\}$ and with $\Gamma_R := \partial\Omega$.

- (i) Is it possible to choose the data f and h such that $u(x) = \cos(\pi/2\|x\|)$ will be the exact solution of the variational problem. If not, suggests a modification that makes it possible.
- (ii) Possibly under the modification found in [(i)], determine those functions f and h that will yield that exact solution $u(x) = \cos(\pi/2\|x\|)$.

C :

In connection with the method of manufactured solutions you have seen the warning

Beware of polynomial exact solutions $u \in \mathcal{P}_p$! (Why?) On the other hand, if the above test fails for non-polynomial u , the next step should be to probe $u \in \mathcal{P}_p$ (Why?).

Try to answer the "Whys".

D :

You have just finished the implementation of the LEHRFEM++-based C++ function

```
template <typename FUNC_ALPHA, typename FUNC_GAMMA, typename
          FUNC_BETA>
Eigen::SparseMatrix<double> compGalerkinMatrix(
    const lf::assemble::DofHandler &lfe_dofh,
    FUNC_ALPHA& alpha, FUNC_GAMMA& gamma, FUNC_BETA& beta);
```

$$u \in H^1(\Omega) : \int_{\Omega} \alpha(x) \mathbf{grad} u(x) \cdot \mathbf{grad} v(x) + \gamma(x) u(x) v(x) \, dx + \int_{\partial\Omega} \beta(x) u(x) v(x) \, dS(x) = \int_{\Omega} f(x) v(x) \, dx \quad \forall v \in H^1(\Omega),$$

where $\alpha, \gamma : \Omega \rightarrow \mathbb{R}$, $\beta : \partial\Omega \rightarrow \mathbb{R}$ are bounded coefficient functions, and $f \in L^2(\Omega)$. The use of the standard nodal basis consisting of "tent functions" is assumed.

The argument `lfe_dofh` passes the loca-to-global index mapping for $S_1^0(\mathcal{M})$ and the mesh \mathcal{M} , while `alpha`, `gamma`, and `beta` are functors for the coefficient functions $x \mapsto \alpha(x)$, $x \mapsto \gamma(x)$, and $x \mapsto \beta(x)$. Unfortunately, your implementation does not work properly. Sketch a debugging strategy based on the policy of direct testing of bilinear forms.

This list of review questions may not be complete. Additional review questions may be provided in the lecture document.

