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c Note: Possible minor mismatch of video and tablet notes!

[Corrections and updates can be incorporated into tablet notes only]
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Idea of collocation discretization
© Seek an approximate solution 1, of (4.4.0.4) in a finite-dimensional
trial space
Vo, CCHQ) , N:=dimVy, < . (4.4.0.6)
@ Pick finitely many collocation nodes/points
X,...,xn €Q , yy,...,y, €00, mmneclN.
v
Impose collocation conditions:
Luy)(x;) = f(x;), '=1,...,n,4/—
- llh = Vo,h: ( h)( ]) f( ]) ]' 4((&&1‘)_’__
(Bun)(yy) =8ye), j=1,...,m.
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The trial space Vj, and the collocation nodes x;,j = 1,...,n,andy,, £ =1,...,m have to satisfy:
Forall f1,...,fn € R, g1,...,8m € R the interpolation problem

up € Vour uxj)=f, j=1...,n u(y,) =g, £=1...,m, (4.4.0.9)

has a unique solution.
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Collocation method: second step
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Choose an ordered basis B, = {b;, ..

., b},\’ } of Vi, and plug the basis representation

uy, =y1b,1,+---+],le,I,V, My, -, UN €ER, (4.4.0.13)

into the collocation conditions (4.4.0.7), yielding the collocation equations
| > yl(Lb,ll)(x]-) +--- 4+ ;tN(Lb,Iz\')(xj) =f(x)), j=1,...,n, (4.4.0.14a)
= Bl )+ unBE) () =8(y), L=1,...,m. (4.4.0.14b)
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%h = {_x S [xl,X2] — Pr(xl)Ps()Q) .
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gj:=cos(7/pj) € [-1,1], |

s dilatd by sl

(4.4.1.5)

tensor-product Chebychev collocation nodes
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Definition 4.4.2.1. Cubic spline & 5

A function s : [a,b] — R is a cubic spline function w.rt. the ordered knotset 7 := {a = x¢ <
X1 <X <...<xm-o1 <xpm=b},if

(i) s€ C*([a,b]) (twice continuously differentiable),

(ii) S|]xj_1.xj] € P3(IR) (a piecewise cubic polynomial)

Viy = 106 Sy #lal =" (b)Y =0 3
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@ 4 Numerical quadrature not required

4+ Implementations confined to simple domains
4+ Weaker theoretical guarantees
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