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Basic configuration space for elastic string model

The configuration space for the elastic string model under vertical loading is the infinite-dimensional
affine function space

Vs := {u € C%[a,b]), u(a) = us u(b) = ub} . (1.21.7)
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\ Reduction to finite-dimensional configuration space

The idea is to approximate an elastic string as a system of finitely many point masses connected by
springs (mass-spring model).
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with po := ug, p,41 = Uy in order to take into account the pinning conditions.

5. L1.3 Gnhnowm Umit
Linldng  con Gatiabon space s

Mﬁ W}?@M) /D (0) . . b2
//(—//(()Q ) r A = 2t (h e 2y
Assvme u e C(Lab])
it - (WWL//%ZZ pu mile e

> L =
( kense &ﬁ?@)

o 6C(Lab]), 00

r /ZL' %V’H”/ ( Lé’ bda

\

(n) )

o (Kir/é

A0
e = 0796 dx

X1y f

) ﬂ((ﬂsf& e C L, 57)

” U\C



©

n 2
(n) n+1 L
Ey (1) = Zo L z(-r:)l/z) (\/h2 +(u(xh) —u(x"))? - n+ 1) ’
1=
(n

)
Xit1/2
N i+1/2

lf;;l)(l’) =g- :E:: (/[

i=1
(n)
Xi_ 12

p(x) dx - u(x{") .

§ 5.1.1.26

Jo(u) = lim E{"

n—oo

(u) = lim g-

n—>00

—7

Lindt of elwnt mz/?m Vi
\/h

(u( x—l—llz ) — u(x — 3h))2 =K7h2 + (' (x)h + O(h?))?

X = )(LH/<1 = \/h2 + |u'(x)|2h% + O(h3)
= h-\/l - \u’(x)|2\/1 + O(h)
— [+485+0(5°) ~
W Héé 0(6) ? = hy/1+ W/ (x)|2+O(h?) for h—0,
b-
h = 77

p(x)dx - u(xI(")) = g/p(x)u(x) dx .

I%%bm e@&%ﬂﬁbn

(5.1.1.24)

(5.1.1.25)

(5.1.1.27)

(5.1.1.29)

- Ey %»’;”“ (x2h2) (Vi + () = () 2 - ,,,il)z
%’Z;n+1 til/Z (h\/l+|u 1)1/2 |2-|-O(l12)—n_|_1>2
= %b L nt1 ):U(xff.)l/z)(\/H |u’(xfi)1/2)|2—ﬁ+0<%>>2.
t Reemapn  som for =
g € C°([0,1)): ”11_r>1;10 = Eq(xfi)l/z) = /an(x) dx, (5.1.1.31)

b 2
1b—a 12 L
5T /0(x)< 1+ |u/(x)] _b—a> dx .
a

bl pofmh‘a/ oy ol elwlic 6/77%

L (d))”
Nz

an<.1+m«mp—bf

- (5.1.1.32)

= hmE()( ) =

n—oo €l

]el(”)

ocled

Z

-—

b
Js() = Ja(u) + Jg(w) = [ 3272

2
a) +gp(x)u(x)dx . (5.1.1.33)

L Well - defined fov  we H'(Ta b), 5115



Equilibrium condition for elastic string model

Configuration space for membrane model

The shape of an elastic string with uniformly positive stiffness o € ng([a,b]), mass density

o € Cpy([a, b)), relaxed length L < b—a, and pinned at [, ], [/, ], @ < b, is the graph of the
minimizer 1, of | from (5.1.1.33) over the affine space

(5.1.1.37)
(5.1.1.38)

Vs := {v e H'(Ja,b]) : v(a) = us and v(b) = ub} :
Uy = argrilinls(v) .

veVs

Under vertical loading the configuration space for membrane shapes over the base domain Q) C R?
is the infinite-dimensional affine function space

V= {u € @), ulyq =d} (12.1.12)
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