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Section 5.2: Calculus of Variations
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» Elementary calculus: differentiation and Taylor expansion
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2 Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]
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Theorem 1.5.2.7. Green’s first formula

For all vector fields j € (Cp,(Q2)) and functions v € C},(Q) holds
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Lemma 1.5.3.4. Fundamental lemma of calculus of variations in higher dimensions
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