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Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]
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6.1.2. Mathemabeal /%c/eld% with ODES

Cloncal /WM - bw@ meachanics ¥ = £ [}Z)
- Blechiad coeects | bansents [ Wewwlrars o]
Chemical wachon Iinelcs

Ex. 6025 (fpulahon 4%/%;%‘(5 : pf@é(b’"ﬂ% el )

ult) ] —> o
A/: 7 - y[é} ;[ ] PR% (Fp/)pﬁ/'pﬁ déﬂf{ﬁfﬁ)
vit)] — }DWEV Coregotd-ap conbnoom 1]
m Sk sppce D = [Oeo[” < RT
ODE-based model: autonomous Lotka-Volterra ODE:
LD eyt an g [0 = [P eres

with positive model parameters «, 8, y,6 > 0.

0
v

M= U = expoehil gt
v o= - yY . d(cca%

U:
M

—

—



— ~— ™~
\ -~ \:’:‘*-.\ h ~ \\‘?'\\
D T e
e ~ = \’&C-.\_\ \\:‘\_ \\\\
| - S ~ N
= =~ \\
e ~ ~ N \ =
| S NN \ \\
> L\ N
. ~ AN AN AN
[N N \
\ . '\‘. \
ey . : i i
rl
s /S /
—
0 /6 -
u
6_

o
T

£ ‘—\>7\4é%/ & f;Qﬁz

2 g e o e e

o~
>

w
T

n
>

A solehom womve / a

a Mﬂ@afmy

] g ke p/m&

v
13N

gg[m& Hﬁ%

JIEA

,F

(Mo an (‘17/'/7‘6?/

6

5

0

Solution curves for (6.1.2.6)
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Definition 6.1.2.4. Autonomous ODE

An ODE of the form y = f(y), that is, with a right hand side function that does not depend on time,
but only on state, is called autonomous.
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6.1.3. Thery of initwalue poblems ( (VPs )

A generic Initial value problem (IVP) for a first-order ordinary differential equation (ODE) - can

be stated as: find a function y : I — D that satisfies, cf Def. 6.1.1.2,
y=1£(ty) ., y(t)=yo. (6.1.3.2)

f:1x D+~ RN = right hand side (rh.s.) (N € IN),

I C R = (time)interval <  “time variable” f,

D c RN = state space/phase space <+ “state variable” y,

(of tupels (£, y)),
initial state > initial conditions.

() := I x D = extended state space
yo€ D =

to € I = initial time,
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Theorem 6.1.3.16. Theorem of Peano & Picard-Lindelof

If the right hand side function f : Q) — RN is locally Lipschitz'continuous (— Def. 6.1.3.12) then
for all initial conditions (to, yo) € () the IVP

y=1£(ty) , y(t)=yo. (6.1.3.2)

has a solution'y € C(J(to, yo), RN) with maximal (temporal) domain of definition ] (o, yo) C 113
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Definition 6.1.2.4. Autonomous ODE

An ODE of the fromy = £(y), that is, with a right hand side function that does not depend on time,

but only on state, is called autonomous.
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Assumption 6.1.4.1. Global solutions (for <im biech

+  jhad values zl0) =z, & {

n — 1 derivatives.

For ODEs of order n € IN well-posed initial value problems need to specify initial values for the first
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Solution curves for (6.1.2.6)
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Definition 6.1.4.3. Evolution operator/mapping

Under Ass. 6.1.4.1 the mapping v .
Znd-veter el elliphe. o b BUP o7 (ab ]
®- { RxD +~ D
| (byo) = @yoi=y(t) d d

= <a(x)d—u(x)> =f in la,bl , u(a)=u,, u(b)=uy. (1.5.1.16)

where t — y(t) € C!(R,RN) is the unique (global) solution of the IVP y = £(y), y(0) = yy, is X X

the evolution operator/mapping for the autonomous ODE y = f(y).
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After you have watched the video take a short break and then try to answer the
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Numerical integration is concerned with the approximation of evolution operators.




NumPDE@ETHZ




