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Order of algebraic convergence of single-step methods

Consider an IVP (6.1.3.2) with solution t — y(t) and a single step method defined by the
discrete evolution ¥ (— Def. 6.3.1.4). If the one-step lerror along the solution trajectory satisfies
(@ is the evolution map associated with the ODE, see Def. 6.1.4.3)

for some p € IN and C > 0, then, usually,

éh):=

with C > 0 independent of the temporal mesh M: The [pointwise) discretization error converges
algebraically with order/rate p. N W Uﬂkm

¥iy(r) — @ly(t

)” < ChP*'!  Vh sufficiently small, t € [0, T], (6.3.2.22)
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4+ IVP: y = 10y(1 — y) (scalar logistic ODE (6.1.2.2)), initial value y(0) = 0.01, final time T = 1,
4+ Explicit single step methods, uniform timestep #.

1

: Tr % 10" =
i[O -74 + s=1, Explicit Euler
09ff *+ ExplicitEuler + s=2, Explicit trapezoidal rule
*  Explicit trapezoidal rule & s=2, Explicit midpoint rule
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Definition 6.4.0.9. Explicit Runge-Kutta method

For b;, aij € R, ¢ Z a,], 1,7 =1,...,s,s € N, an s-stage explicit Runge-Kutta single step
method (RK-SSM) for the ODE y = f(t,y), f: QO — RV, is defined by (yo € D)
i—1
ki := f(to +¢ih, yo+h ) ajk;) ,
j=1

S h
i=1,...,s , y1:=y0+hzbiki:T>/0
i=1

The vectors k; € RN, i =1,...,s, are called increments, /1 > 0 is the size of the timestep.
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Butcher scheme notation for explicit RK-SSM

Shorthand notation for (explicit) Runge-

Kutta methods
Butcher scheme | 1
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Consistent discrete evolution [t

tep method according to Def. 6.3.1.4 and (6.3.1.5) for
of the form

The discrete evolution ¥ defining a singl
the autonomous ODE y = f(y) must

¢ : I x D — RN continuous,

6.3.1.10
p(0,y) = £(y) - ( )

Yy =y + htp(h,(y/) with

Fv h =0 kK, = 7z
V/Oy 1 (

Corollary 6.4.0.13. Consistent Runge-Kutta single step methods

A Runge-Kutta single step method according to Def. 6.4.0.9 is consistent (— Def. 6.3.1.11) with the
ODEy = f(t,y), if and only if
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Explicit Euler method (6.2.1.4): 1 > order = 1|/ Please answer review questions
After you have watched the video take a short break and then try to answer the
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explicit trapezoidal method (6.4.0.6): 11 0 > order = 2 L
% % Please do not flip pages of the lecture document, nor look at tablet notes.
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