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6.5.1. The Need for Timeskp Adoptation
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This is a apecial case of an “oscillating” Zhabotinski-Belousov reaction :
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HBrO; +Br~ +— Org
— BrO; + HBrO; ~— 2HBrO; + Ce(IV) (6.5.0.2)
Prerequisites. 2HBrO; +— Org
e Knowledge about adaptive numerical quadrature Ce(IV) ~ Br
Dependencies. [Lecture — Section 6.4] |
ODE  model Bv reachion linehics -
Video and accompanying tablet notes may not match completely! - .
A PAIng ’ PEEY y1:=c(BrO3): 1 = —kiyiy2—ksyays,
[Corrections and updates may have been made in tablet notes.] Yo 1= C(Br_): V2 = — kq Y1Y2 — k2y2y3 + k5y5 ,
Y3 = c(HBrO,): Y3 = kiyiyz — kzy%yg + k3y1y3 — 2k4y% , (6.5.0.3)
yy:=c(0rg): Yy = kapys+kyys,
ys := c(Ce(IV)): Y5 = kay1yz —ksys,
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6.5.2 Local-in-hme Stepsize (ontmol
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Stepsize adaptation for single step methods / /
|
[Dresin max_ly(tx) — yill<ToL

k=1,...N

, TOL = tolerance
or |y(T) —ym|l < TOL

Objective: M as small as possible &

Policy:  Try to curb/balance one-step error by

4 adjusting current sjépsize hy,

+ predicting suitablg next timestep /1.,

local-in-time
stepsize control

Tool:  Local-in-time one-step error estimator (a posteriori, based on yy, hj_1)
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Compare results for two discrete evolutions ¥”, ' of different order over
current timestep h:

If Order(¥) > Order(¥), then we expect

@'y, — Ty ~ EST, := ¥y, ¥y, . (6.5.2.3)
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C++11 code 6.5.2.6: Simple local stepsize control for single step methods = GITHUB

// Auxiliary function:
template <class State>
double _norm(const State &y) { return y.norm(); }

default norm for an EIGEN vector type

// Adaptive numerical integrator based on local-in-time stepsize control
template <class DiscEvolOp, class State, class NormFunc = decltype(_norm<State >)>
std ::vector<std :: pair<double, State> >

odeintadapt(DiscEvolOp &&Psilow, DiscEvolOp &&Psihigh,

10 const State &y0,double T, double h0,

11 double reltol , double abstol, double hmin,

12 NormFunc &norm = _norm<State >) {

13 double t = 0; // initial time thg=0

14 State y = y0; // current state

15 double h = h0; // timestep to start with

16 std :: vector<std :: pair<double, State >> states; // vector of times/computed
states: (b, ¥Yi)i

17 states.push_back ({t, y}); // initial time and state

w0 O N OO 0 s W N

19 while ((states.back().first < T) & (h >= hmin)) { //
~}
Psihigh(h, y); // high order discrete evolution ¥

20 State yh =
21 State yH = Psilow(h, y); // low order discrete evolution ¥"
2 double est = norm(yH-yh); // local error estimate EST}
23
24 if (est < std::max(reltol*norm(y), abstol)) { // step accepted
25 y = yh; // use high order approximation
t =t + std::min(T—t ,h); // next time f 4([%&%
2 states . push_back ({t,y}); //
28 h = 1.1xh; // try with increased stepsize
2 }
30 Ise { // step rejected
31 h = h/2; // try with half the stepsize

}

// Numerical integration has ground to a halt !

/gm'n&&hﬁ f hatf "
—  e9. H@’HJ’UF ceboted/

std::cerr << "Warning: Failure at t=" << states.back().first
<< ". Unable to meet integration tolerances without reducing the step

32

33

% if (h < hmin) {
n =

36

37 << "size below the smallest value allowed (" << hmin << ") at time t."
38 << std::endl;

3 }

w [}

4 return states;
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@ T& L /p+/ C++11 code 6.5.2.17: Refined local stepsize control for single step methods
= GITHUB

XL E/CE 2 |// Auxiliary function: default norm for an EIGEN vector type
s |template <class State>
4+ [double _norm(const State &y) { return y.norm(); }
s |// Adaptive single-step integrator
s |template <class DiscEvolOp, class State, class NormFunc = decltype (_norm<State >)>
7 | std ::vector<stid :: pair<double, State> >
s | odeintssctrl (DiscEvolOp &&Psilow, unsigned int p, DiscEvolOp &&Psihigh,
9 const State &y0,double T, double hO,
10 double reltol , double abstol , double hmin,
1 NormFunc &norm = _norm<State >) {
12 double t = 0; // initial time ty=0
13 State y = y0; // current state, initialized here

14 double h = h0; // timestep to start with
15 std :: vector<std :: pair<double, State>> states; // vector (f, ¥i)i
16 states.push_back ({t, y});

17
//h'( //7/7/w }/)73‘ %V 18 // Main timestepping loop

19 while ((states.back().first < T) & & (h >= hmin)) { //

‘ WZ%% Skp im CW TQL 4. ES7_[< 2 | State yh = Psihigh(h, y); // high order discrete evolution ‘i’h

21 State yH = Psilow(h, y); // low order discrete evolution yh

. 7[ /Z( ) 2 double est = norm(yH-yh); // <> EST}
W//( S P ( /P TﬁL —~ E\S 7—]‘< 23 double tol = std::max(reltolxnorm(y), abstol); // effective tolerance
24
25 // Optimal stepsize according to (6.5.2.16)
\zs\\ if (est < tol) { // step accepted
>‘ states . push_back ({t = t+std::min(T—t,h),y = yh}); // store next approximate

state
28
2 h = hxstd ::max(0.5,std ::min(2.,std ::pow(tol/est,1./(p+1)))); // h%
2 if (h < hmin) {
3t std:: cerr

32 << "Warning: Failure at t=" << states.back().first

33 << ". Unable to meet integration tolerances without reducing the step"
3 << " size below the smallest value allowed (" << hmin

35 << ") at time t." << std::endl;

% }

37 }

38 return states;

® |}




6.5.3. Embedded Rurf‘e-kvh‘a Method s

Definition 6.4.0.9. Explicit Runge-Kutta method

method (RK-SSM) for the ODE y = f(t,y), f : QO — RY, is defined by (yo € D)

i—1 s
ki = f(f0+Cil’l,y0+l’lZ(l,‘jkj), i=1,...,s , Y1 = Yo +I’12biki.
j=1 i=1

Thevectorsk; € RN, i=1,..., s, are called increments, i > 0 is the size of the timestep.

For bj, a;j € R, ¢; := Z;'.;]la,-j, iji=1,..., s,s € N, an s-stage explicit Runge-Kutta single step
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No global error control through local-in-time adaptive timestepping A

The absolute/relative tolerances imposed for local-in-time adaptive timestepping do not allow to
predict accuracy of solution!
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Please answer review questions

After you have watched the video take a short break and then try to answer the
review questions 6.5.3.9

You should do this without consulting other parts of the lecture document or tablet notes.




