@

VI Nomerical /nfejmf(m =
| 5//75{[6 - Step Methods
Course Video

Section 6.5: Adaptive Stepsize Control 6 5 ./467/5(]01{ e 6+€]D~SI 2z COI’HZI‘Oé
6.5.1. The Need for Timeskp Adoptation
Px. 0.9.LL Oeqoviator eachinn |

This is a apecial case of an “oscillating” Zhabotinski-Belousov reaction :

ETH Lecture 401-0674-00L Numerical Methods forEesseDifferential Equations

Prof. R. Hiptmair, SAM, ETH Zurich

Date: March 27, 2021
(C) Seminar fir Angewandte Mathematik, ETH Zlrich

BrO; +Br~ +— HBrO;
HBrO; +Br~ +— Org
— BrO; + HBrO; ~— 2HBrO; + Ce(IV) (6.5.0.2)
Prerequisites. 2HBrO; +— Org
e Knowledge about adaptive numerical quadrature Ce(IV) ~ Br
Dependencies. [Lecture — Section 6.4] |
ODE model Bv reachion linehics -
Video and accompanying tablet notes may not match completely! - .
A PAIng ’ PEEY y1:=c(BrO3): 1 = —kiyiy2—ksyays,
[Corrections and updates may have been made in tablet notes.] Yo 1= C(Br_): V2 = — kq Y1Y2 — k2y2y3 + k5y5 ,
Y3 = c(HBrO,): Y3 = kiyiyz — kzy%yg + k3y1y3 — 2k4y% , (6.5.0.3)
yy:=c(0rg): Yy = kapys+kyys,
ys := c(Ce(IV)): Y5 = kay1yz —ksys,

. _ Concentration of HBrO
@ . Concentration of Br 2

Shec ke p/mﬁ;zw

solution by oda45
100 T T

ol + Y¥%=95

i P 5 0 [5%) ‘)7/ wlaphive S =
N | eplicit RR-SsH

60

107
0

i i i i i i i i i 107"
20 40 60 80 100 120 140 160 180 200 0

il I A Il 'l s I il A
20 40 60 80 100 120 140 160 180 200

\> 60&0{/77)0’1/[| W/M% WW'WW /.}7 7%/77/6 0 —t a';';;;§=::;::::;....,i o
> U Wg/)é% m - e o fempome L W20

Ex. 6.51Y (EX/;Zag(mn DE)
L2 .
J o)
v(O) = v, > U
> Fndle- hme b/JL{/'U/P

301 | ‘l ' -
d/{ —27 — / 20} | |J : |
o} — — s

t

y(®)

25

O,
6.5.2 Local-in-hme Stepsize (ontmol

W“n% exaclhem M M
/Pm'no{pél/) : L s a///p%”f Wﬂm :

efficent 4 eliable |
\ / ek pfwmbfo(
/!
Stepsize adaptation for single step methods / /
|
[Dresin max_ly(tx) — yill<ToL

k=1,...N

, TOL = tolerance
or |y(T) —ym|l < TOL

Objective: M as small as possible &

Policy: Try to curb/balance one-step error by

4 adjusting current sjépsize hy,

+ predicting suitablg next timestep /1.,

local-in-time
stepsize control

Tool: Local-in-time one-step error estimator (a posteriori, based on yy, hj_1)

%
- -— 3 hi N
= Y ¥1< f %{k Chooge 79267‘/ m/{% laotd
Y\0+ d((é&@lbé(. an ,ékl ¥kr i/7|<

can quly be eshmated (af 0(]) [05%/54/9 >
C alno 0(51]1@ “in=Fme)

¢y\4 Che -Skep empr
«(h,) Exach solahring of 1VP

;/;f(y)/ (@c)f}/k
4

(Laad-in-hme emor eohmatien

ldea: Estimation of one-step error

. I .
Compare results for two discrete evolutions ¥”, ' of different order over
current timestep h:

If Order(¥) > Order(¥), then we expect

@'y, — Ty ~ EST, := ¥y, ¥y, . (6.5.2.3)
\q/_/ ri,_“_

T redaces exoet slnlom

Heuristics fo : concrete 1 > 0

com pu&f)'mzoé%/ avd leeble

one-step error

@ s6.5.2.1 (L&C% ﬁrmafc/p &M/ﬁ({pf&/fm)

Available for Hnewkp size R

b . 1% / (ﬁﬁr, L. [%@{]
Compue. =T &= ToL = mwxd Al QTDL‘//yk//f
YES NO

Acwﬁ shep
Aclvamct b next S/ep

((he [lh)

=5T,

er'e a{ep@/zé
RC/%d/f w/ h <Lk

C++11 code 6.5.2.6: Simple local stepsize control for single step methods = GITHUB

// Auxiliary function:
template <class State>
double _norm(const State &y) { return y.norm(); }

default norm for an EIGEN vector type

// Adaptive numerical integrator based on local-in-time stepsize control
template <class DiscEvolOp, class State, class NormFunc = decltype(_norm<State >)>
std ::vector<std :: pair<double, State> >

odeintadapt(DiscEvolOp &&Psilow, DiscEvolOp &&Psihigh,

10 const State &y0,double T, double h0,

11 double reltol , double abstol, double hmin,

12 NormFunc &norm = _norm<State >) {

13 double t = 0; // initial time thg=0

14 State y = y0; // current state

15 double h = h0; // timestep to start with

16 std :: vector<std :: pair<double, State >> states; // vector of times/computed
states: (b, ¥Yi)i

17 states.push_back ({t, y}); // initial time and state

w0 O N OO 0 s W N

19 while ((states.back().first < T) & (h >= hmin)) { //
~}
Psihigh(h, y); // high order discrete evolution ¥

20 State yh =
21 State yH = Psilow(h, y); // low order discrete evolution ¥"
2 double est = norm(yH-yh); // local error estimate EST}
23
24 if (est < std::max(reltol*norm(y), abstol)) { // step accepted
25 y = yh; // use high order approximation
t =t + std::min(T—t ,h); // next time f 4([%&%
2 states . push_back ({t,y}); //
28 h = 1.1xh; // try with increased stepsize
2 }
30 Ise { // step rejected
31 h = h/2; // try with half the stepsize

}

// Numerical integration has ground to a halt !

/gm'n&&hﬁ f hatf "
— e9. H@’HJ’UF ceboted/

std::cerr << "Warning: Failure at t=" << states.back().first
<< ". Unable to meet integration tolerances without reducing the step

32

33

% if (h < hmin) {
n =

36

37 << "size below the smallest value allowed (" << hmin << ") at time t."
38 << std::endl;

3 }

w [}

4 return states;

®
Exp. 6.5.2.8 (Simple adaplive Skpsize contot)

« Sl 7: (ps/o//) y/ﬁ)<0 ot = 20
’ Q/Ph — 6)(/9(. bulyr . P e exp. ﬁzzp@ozc/w(e thal
[o =) (v = 2)

Adaptive imestepping, riol = 0.010000, atol = 0.000100, a = 20.000000
T T T

lrue arror l|y[\‘)-yh\

estimated error ESTk

o o o o
8 e 2 2

o o o
2 e B

*
nnnnnnn

-0.08
0

66 timesteps, 131 rejected timesteps

|
\V/
Sohmated ooy BSTe and

fve eror | y/t) -y, | mody anelike
ESTy wfud v ey contol

Statistics:

Nesoethelim -

FXp. 6.5.2.9 [Cain +hi c/éé{pffm})
>§m///7é¢ a}/ /7? 6.5.7.6 y/& =0, RTOL vamed

= 40.000000 by simple adaptive timestepping

Error vs. no. of timesteps for d y acos[y = 40.000000

005
; + uniform timestep
0.045 | ¥ a ve timest,
004 &/ J
E;(P[. hP Methe
035+ /
/ 1 wni om mM/] 3
af f S
H >
: A
: <
025} ; = 1
§ “x
: 3
2 g +
: . + "y +
. 10"‘ - v -+ -
sf N & /
N _r P = v
: ol = 0.400000 0 ﬂ/
1 riol = 0.200000 N <
riol = 0.100000 -
10k J
riol = 0.050000 0 * ﬂﬂM)7
0.005F riol = 0.025000 .
- ol =0.012500
riol = 0.006250
! . ! . 10 107
t no. N of timesteps

Solutions (yy) for different values of rtol Error vs. computational effort

Frp. 65210 (' Faitine " o adbglive h’/%@%%)
s 55%%0{ EX/D 65728 //9)4 O
RTOL vamed

Error vs. no. of timesteps fordy = aoosly)2 with

a =40.000000

max, |y(t,)-y, |

10°
no. N of timesteps

Error vs. computational effort

Sennihise

ShM Skable

%”f@(@{;;m

é(’ 7

wlyptca[w&/cfmn

uniform timestep |
adapt mastep
m@ oN % z’gﬂ(6/273
7%/77/0&
ngd:y cos(y) 40.000000 by simple adapt astepping
o
003} _‘.-" s
LA
> oF
{’a (W h |< «{.a ol = 0.400000
riol = 0.200000
. riol = 0.100000
S et riol = 0.050000
: : ol = 0.025000
rol = 0.012500
ol = 0.006250

%Wm(mc(>
% M‘M of Skp an il

Céﬁ/ —004}F

1
t

Solutions (yy) for different values of rtol

£65.7 f(Qéﬁrw/ lecal 5@5126 cntol)

More ambitious goal ! When EST, > TOL:

When EST; < TOL :

stepsize adjustment better k. = ?
stepsize prediction good hy 1 =?

[Oph(vm% h?wd(/ h,

Buad o EST,

¥

0%1//3

EST, = BST (h) =

Crdtev D!

T -

> One fJ%@/y a0
L b= T
Y >/I< - ¢ }ZK

ch?roth)
O h*?")

—

fov h— 0

—

= BT, = ch® [p & 0(h")]
L e ” —
= oohmale = W‘j’ ()

/

chy”

(h) TO/.

@ T& L /p+/ C++11 code 6.5.2.17: Refined local stepsize control for single step methods
= GITHUB

XL E/CE 2 |// Auxiliary function: default norm for an EIGEN vector type
s |template <class State>
4+ [double _norm(const State &y) { return y.norm(); }
s |// Adaptive single-step integrator
s |template <class DiscEvolOp, class State, class NormFunc = decltype (_norm<State >)>
7 | std ::vector<stid :: pair<double, State> >
s | odeintssctrl (DiscEvolOp &&Psilow, unsigned int p, DiscEvolOp &&Psihigh,
9 const State &y0,double T, double hO,
10 double reltol , double abstol , double hmin,
1 NormFunc &norm = _norm<State >) {
12 double t = 0; // initial time ty=0
13 State y = y0; // current state, initialized here

14 double h = h0; // timestep to start with
15 std :: vector<std :: pair<double, State>> states; // vector (f, ¥i)i
16 states.push_back ({t, y});

17
//h'(//7/7/w }/)73‘ %V 18 // Main timestepping loop

19 while ((states.back().first < T) & & (h >= hmin)) { //

‘ WZ%% Skp im CW TQL 4. ES7_[< 2 | State yh = Psihigh(h, y); // high order discrete evolution ‘i’h

21 State yH = Psilow(h, y); // low order discrete evolution yh

. 7[/Z() 2 double est = norm(yH-yh); // <> EST}
W//(S P (/P TﬁL —~ E\S 7—]‘< 23 double tol = std::max(reltolxnorm(y), abstol); // effective tolerance
24
25 // Optimal stepsize according to (6.5.2.16)
\zs\\ if (est < tol) { // step accepted
>‘ states . push_back ({t = t+std::min(T—t,h),y = yh}); // store next approximate

state
28
2 h = hxstd ::max(0.5,std ::min(2.,std ::pow(tol/est,1./(p+1)))); // h%
2 if (h < hmin) {
3t std:: cerr

32 << "Warning: Failure at t=" << states.back().first

33 << ". Unable to meet integration tolerances without reducing the step"
3 << " size below the smallest value allowed (" << hmin

35 << ") at time t." << std::endl;

% }

37 }

38 return states;

® |}

6.5.3. Embedded Rurf‘e-kvh‘a Method s

Definition 6.4.0.9. Explicit Runge-Kutta method

method (RK-SSM) for the ODE y = f(t,y), f : QO — RY, is defined by (yo € D)

i—1 s
ki = f(f0+Cil’l,y0+l’lZ(l,‘jkj), i=1,...,s , Y1 = Yo +I’12biki.
j=1 i=1

Thevectorsk; € RN, i=1,..., s, are called increments, i > 0 is the size of the timestep.

For bj, a;j € R, ¢; := Z;'.;]la,-j, iji=1,..., s,s € N, an s-stage explicit Runge-Kutta single step

4

iz - Same wncements for ’%hmp/ P
OWO/@ W'gﬁ) O; dffVewent
/VD'ZlHOH X

Exlenlec! Bulcher
Scheime

N W= W= O

|
O | N ool
N

<
[y

of

-] - o O =

== o= | M= = o= vl

wino | LN

1
6

1 -

Merson’s embedded RK-SSM

> " Wbhomer ’ in Ubanen v peamencal /h/(ﬁ/zszp

Tﬂ)zf&{/ (nler fzzce
oo+ - Rgh%»baﬁd side orchon
(n7hol valect }/&
- Inihed hme 4., & Gwl hine T
Tolermnees ATOL, RTOL

Remm 6.5.3 4 (Tolekces amd accoxa%J

4L

No global error control through local-in-time adaptive timestepping A

The absolute/relative tolerances imposed for local-in-time adaptive timestepping do not allow to
predict accuracy of solution!

P phaddan for VP awith sensibve depantence
o iwhel andibons . —= Exp. 6.9.2.10

©

Please answer review questions

After you have watched the video take a short break and then try to answer the
review questions 6.5.3.9

You should do this without consulting other parts of the lecture document or tablet notes.

