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ETH Lecture 401-0674-00L Numerical Methods for Pasfial Differential Equations

Course Video
Section 7.1: Model Problem Analysis

Prof. R. Hiptmair, SAM, ETH Zurich

Date: April 5, 2021
(C) Seminar fir Angewandte Mathematik, ETH Zurich

Prerequisites.
e Complex numbers
e Diagonalization of matrices

Dependencies. [Lecture — Section 6.2.1], [Lecture — Section 6.4], [Lecture — Section 6.5], [Lecture
—+ §6.5.3.2]

Duration: minutes

2 Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]
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4+ We consider the IVP for the scalar linear decay ODE:

*

error at final time T=1 (Euclidean norm)

y=fly):=Ay, A<0 , y0)=1.

We apply the explicit Euler method (6.2.1.4) with uniform timestep #
{5,10,20,40,80,160,320,640}.

1/N, N €

Explicit Euler, h=174.005981 Explicit Euler, h=175.005493
T T T

Explicit Euler method for saalar model problem
T T

o || —— x=-90.000000

—+— A =-10.000000
~—+— k =-30.000000
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A < 0: blow-up of v for large timestep / A = 20: — = y(t), — = Euler polygon
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4+ Now we look at an IVP for the logistic ODE, see Ex. 6.1.2.1:

’

y=fly) =ray(l-y) ,

As before, we apply the explicit Euler method (6.2.1.4) with uniform timestep i = 1/N, N €
{5, 10,20, 40, 80,160, 320,640}.

y(0) = 0.01.
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4 “Linear model problem IVP": y = Ay, y(0) = 1, A = —100

| I+ Simple adaptive timestepping method as in Exp. 6.5.2.8, see Code 6.5.2.6. Timestep control based

on the pair of 1st-order explicit Euler method and 2nd-order explicit trapezoidal method.
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Decay equation, riol = 0.010000, albl = 0.000100, A = 100.000000
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Clearly, blow-up can be avoided only if |S(hA)| < 1:

Stability polyno icil trapezoidal rule

z = ?{h
ze 1—z+ 2225(2-> |

IS(hA)| <1 & —2<hA<O0.

| Qualitatively correct decay behavior of (1/;); only un-
der timestep constraint

S(z)

h < |2/a]. (7.1.0.12)

< the stability function for the explicit trapezoidal
+ = - — method
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Definition 6.4.0.9. Explicit Runge-Kutta method

For bj, a;; € R, ¢; := ):;;} aij,i,j=1,..., s,s € IN, an s-stage explicit Runge-Kutta single step
method (RK-SSM) for the ODE y = f(t,y), f : Q — RY, is defined by (yo € D)
i1

f(t0+c,-h,y0+hza,-]-kj) , I = 1,...,5 ;7 Y1 = Y()—i—th,'k,' .
j=1 i=1

— k,‘ =

Thevectorsk; € RN, i=1,..., s, are called increments, i1 > 0 is the size of the timestep.

Fov =1 £ty ﬁy 1< R

i—1

|~ ki=AMyo+h) ajk;),

>>’ ,21’” L [ o[k]_. [
—ZbT 1 1 _yol ’

Y] = y0+lizbk

i=1

(7.1.0.14)
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Y1 = Yo :I — O: = S(z) =det(I—zA+2z1b"), (7.1.0.16)

Theorem 7.1.0.17. Stability function of explicit Runge-Kutta methods — ,

The discrete evolution ‘I’f{ of an explicit s-stage Runge-Kutta single step method (— Def. 6.4.0.9)
A
with Butcher scheme i’_br (see (6.4.0.11)) for the ODE vy = Ay amounts to a multiplication with
the number
¥h = S(Ah) & y1=S(Ah)yo,
where S is the stability function (SF)

S(z) :=14+2zbT(I1—2A) "1 =det(I —zA +2z1bT), 1:=[1,...,1]T € R°. (7.1.0.18)

Lo P&%WW of Aeqry < s

Corollary 7.1.0.20. Polynomial stability function of explicit RK-SSM

For a consistent (— Def. 6.3.1.11) s-stage explicit Runge-Kutta single step method according to
Def. 6.4.0.9 the stability function S defined by (9.2.7.47) is a non-constant polynomial of degree
<s, thatis, S € Ps.
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Explicit Euler method (6.2.1.4): 3 > S(z)=1+z.
0[O0 O -
Expl. trapezoidal method (6.4.0.6): 1{1 O > 5(z) =14z + 527,
2 2
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- " — Only if one ensures that |Ah| is sufficiently small, one can avoid exponentially increasing approxi-
Lemma 7.1.0.23. Stability function as approximation of exp for small arguments mations v (qualitatively wrong for A T 0) when applying an explicit RK-SSM to the model problem

(7.1.0.5) with uniform timestep /1 > 0,

Let S denote the stability function of an s-stage explicit Runge-Kutta single step method of order
g € IN. Then

15(z) — exp(z)| = O(|z|"*!) for |2| = 0. (7.1.0.24) L7 &%lb(&‘éﬂ(rlﬂmw/ f7'/?7€6/€/ ozt
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Corollary 7.1.0.25. Stages limit order of explicit RK-SSM

An explicit s-stage RK-SSM has maximal order q < s. § 7 _ [ 0 3@ ( 5/57[6/77 54 y/ h/&/m 0 DE 5 >
;Z - M VA Me Y
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w| |0 1 |ju|l | O with f > a > 1
ol  |—-B —al|v o(f)| 7 in usual settings.
-~ ——
=y =:f(ty)

= A Uy ODE ;;= A%y—+,b@)

%p/)@ ﬂ//{pb‘% embeddect  RK-SSM Qe Y5

RCL-circuit: R=100.000000, L=1.000000, C=0.000001
T T

R = 100Q, L = 1H, C = 1uF, Us(t)
| u(0) = v(0) = 0 (“switch on”)

| oded4s5 statistics:

17901 successful steps

1 1210 failed attempts

114667 function evaluations

u(t),v(t)

u L)~ 0

Tiny timesteps despite virtually constant solution!
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The explicit Euler method generates uniformly bounded solution sequences (yi);.. for y = My with
diagonalizable matrix M € RNN with eigenvalues A, ..., AN, if and only if it generates uniformly
bounded sequences for all the scalar ODEs z = Az, i =1,.. ., N.
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Definition 6.4.0.9. Explicit Runge-Kutta method

w&/w m%/gm e

For b;,a;j € R, ¢; := 2};{a,-j, ,j=1,..., s,s € IN, an s-stage explicit Runge-Kutta single step

method (RK-SSM) for the ODE y = f(t,y), f : Q — RY, is defined by (yo € D)

i—1
k; := f(to+cih,yo+h Z a,-]-k]-) ,

=1,...,5s , y1::y0+112b,-k,-.
j=1

i=1

The vectorsk; € RN, i =1,..., s, are called increments, 11 > 0 is the size of the timestep.
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The RK-SSM generates uniformly bounded solution sequences (yy )., for the ODE y = My W|th
diagonalizable matrix M € RNN with eigenvalues Ay, ..., Ay, if and only if it generates uniformly
..\bounded sequences for all the scalar ODEs z = A;z,i =1,...,N.

v

Stability analysis: reduction to scalar case

Understanding the behavior of RK-SSM for autonomous scalar linear ODEs y = Ay with A € Ciis
enough to predict their behavior for general autonomous linear systems of ODEs.

Nike [l —= =
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Imedl NJ:

Theorem 7.1.0.48. (Absolute) stability of explicit RK-SSM for linear systems of ODEs

The sequence (yy), of approximations generated by an explicit RK-SSM (— Def. 6.4.0.9) with
stability function S (defined in (9.2.7.47)) applied to the linear autonomous ODE y = My, M &<
CNN with uniform timestep h > 0 decays exponentially for every initial state yo € CV, if and only
if |S(A:h)| < 1 for all eigenvalues A; of M.

§ 1049 ( Qéj/bn 0{ &é/ﬁz'éff)/ oy KX/&'&K% Rl -&snd)

Definition 7.1.0.51. Region of (absolute) stability

Let the discrete evolution ¥ for a single step method applied to the scalar linear ODE y = Ay,
A € C, be of the form

Y'y=S(z)y, yeC, h>0 with z:=hA (7.1.0.52)

and a function S : C — C. Then the region of (absolute) stability of the single step method is given
by

Sy:={zeC:|S(z)| <1} CC.
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Please answer review questions

After you have watched the video take a short break and then try to answer the

review questions 7.1.0.54

Please avoid consulting the lecture document or tablet notes.




