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Video and accompanying tablet notes may not match completely!
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[Corrections and updates may have been made in tablet notes.]
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Notion 7.2.0.7. Stiff IVP

An initial value problem is called stiff, if stability imposes much tighter timestep constraints on explicit
single step methods than the accuracy requirements.
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The short-time evolution of y with y(0)
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— y* is approximately governed by the affine-linear ODE
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Ex 7103 cht o i

i€ Y/&)Ny% » A= [C/é(wgéq%,j

§ 7200 (Linvawizaton of it RK - SS5Ms )

A (&mm&%)% &éfk@ﬂm : (%rnm@p he=0 Fxd )

v = fly) WZZ”; > 2= Dily)z + £ly7)
Rl-85M Rk~ SsM
/ | v
%&ffff ewlulpn PP enE //th D =D
(¥ D> 7D 1 wued 3/*

the discrete evolution of the RK-SSM for y = f(y) in the state y” is close to the discrete
evolution of the same RK-SSM applied to the linearization (7.2.0.10) of the ODE in y*.
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The behavior of an explicit Runge-Kutta single-step method applied to y = f(y) close to the
state y* is determined by the eigenvalues of the Jacobian Df(y*).
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How to distirjguish stiff initial value problems

An initial value problem for an autonomous ODE y = f(y) will probably be stiff, if, for substantial
periods of time,

min{Re A : A € o(DE(y()))} <0,
and max{ReA : A € o(Df(y(t)))} <0,

(7.2.0.13)
(7.2.0.14)

where t — y/(t) is the solution trajectory and o(M) is the spectrum of the matrix M, see .
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satisfies ||y(t)|, = 1 for all times.
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Typical features of stiff IVPs:
4+ Presence of fast transients in the solution, see Ex. 7.1.0.3, Ex. 7.1.0.35,
4+ Occurrence of strongly attractive fixed points/limit cycles, see Ex. 7.2.0.4
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Please answer review questions

After you have watched the video take a short break and then try to answer the

review questions 7.2.0.17

Please do not flip pages of the lecture document, nor look at tablet notes.
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