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Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]
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Notion 7.2.0.7. Stiff IVP

VL.

An initial value problem is called stiff, if stability imposes much tighter timestep constraints on explicit
single step methods than the accuracy requirements.
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For any timestep, the implicit Euler method generates exponentially decaying solution sequences

(Vi) for yl\: My with diagonalizable matrix M € RNV with eigenvalues A4, .. ., An,ifReA; <0
foralli =1,.].,N.
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Theorem 7.3.2.12. Order of collocation single step method

Provided that f € CFP(I x D), the order (— Def. 6.3.2.8) of an s-stage collocation single step

method according to (9.2.6.26) agrees with the order (— Def. 2.7.5.29) of the quadrature formula
on (0, 1] with nodes c; and weights bj,j =1,...,s.
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Definition 7.3.3.1. General Runge-Kutta single step method (cf. Def.

For b;,aij € R, ¢; := Zj':] aij, i,j = 1,...,s, s € N, an s-stage Runge-Kutta single step method
(RK-SSM) for the IVP (6.1.3.2) is defined by

ki = f(to+ch,yo £ h Y ak), i=1,...,5 , yi:=yo+h) blk;.
=1 i=1

As before, the vectors k; € RY are called increments.

S
ki = f(t() + Cil’l,yO +h Z a,]k]) ,

Ci
aj = L:(t)dT,
pu j= [ L)
1

bi::/L,' dr.
[ L) de

where (7.3.2.6)

y1:=yu(t1) =yo+h) bk;.
i=1

[ notul
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Definition 6.4.0.9. Explicit Runge-Kutta method

For bj,a;j € R, ¢; := ):;.;{ aij,i,j =1,...,s,s € N, an s-stage explicit Runge-Kutta single step
method (RK-SSM) for the ODE y = f(t,y), f : Q — RY, is defined by (yo € D)
i1

k,'2=f(f0+Cih,yO+hzaijkj), i=1,...,5 , y1:=y0+hzbiki-
j=1 i=1

The vectors k; € RN, i =1,...,s, are called increments, /i > 0 is the size of the timestep.

Ntz hon

General Butcher scheme notation for RK-SSM

Shorthand notation for Runge-Kutta methods C1 | 411 SR
c| A :
Butcher scheme > b = '

Cs | As1 o Ass

Note that now, in contrast to (6.4.0.11), 2 can be | by o+ b

a general s X s-matrix.
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Theorem 7.3.4.4. Stability function of Runge-Kutta methods, cf. Section 11.4.3

The discrete evolution ‘I”}\ of an s-stage Runge-Kutta single step method (— Def. 9.2.6.31) with
Butcher scheme L’T?[r (see (9.2.6.33)) for the ODE y = Ay is given by a multiplication with

det(I — z2 + z1bT)
det(I —z2A)

S(z):=14+zbT(I—2z2A)""1 = z:=Ah, 1=0,...,1]TeR°.
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Definition 7.3.4.9. A-stability of a Runge-Kutta single step method

A Runge-Kutta single step method with stability function S is A-stable, if

C :={zeC:Rez <0} CSy. (Sy = region of stability Def. 7.1.0.51)

A-stable Runge-Kutta single step methods will not be affected by stability mduced timestep constraints
when applied to stiff IVP (— Notion 9.2.7.16). . Uh(D/)%{/f;@rm// Jé)/)
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Implicit midpoint method s = 2 (order 4) s — 4 (oerder 8)

Theorem 7.3.4.12. Region of stability of Gauss collocation single step methods

s-stage Gauss collocation single step methods defined by (9.2.6.26) with the nodes cs given by the
s Gauss points on [0, 1], feature the “ideal” stability domain:

Sy=C". (7.3.4.11)

In particular, all Gauss collocation single step methods are A-stable.
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Solutions by RK-SSMs
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Definition 7.3.4.15. L-stable Runge-Kutta method —

A Runge-Kutta method (— Def. 9.2.6.31) is L-stable/asymptotically stable, if its stability function (—
Thm. 7.3.4.4) satisfies

A ~storble o

Rez <0 = |S(2)| <1,
lim S(z)=0.

Rez——o0 \

(7.3.4.16)
(7.3.4.17)
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Radau RK-SSM, order 5
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Please answer review questions

After you have watched the video take a short break and then try to answer the

review questions 7.3.4.23

You should do this without consulting other parts of the lecture document or tablet notes.




