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Definition 7.3.3.1. General Runge-Kutta single step method (cf. Def.

For bj,aij € R, ¢; := Z}':l aij, i,j =1,..., s, s € IN, an s-stage Runge-Kutta single step method
(RK-SSM) for the IVP (6.1.3.2) is defined by

f(t() +C,'I’l,y0+h Za,}k]) - i=1,..., S , Y1:=Yo +h Zbiki .
j=1 i=1
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As before, the vectors k; € RY are called increments.
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Idea: Use only a fixed small number of Newton steps to solve forthe k;, i = 1,..., S.

Extreme case: use only a single Newton step! Let's try.

+ We run the implicit Euler method (6.2.2.2) anc °
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Logistic ODE, Yo = 0.100000, A = 5.000000
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the semi-implicit Euler method (7.4.0.2) witr
uniform timestep i = 1/n, : 107
n € {5,8,11,17,25,38,57,85,128,192,288, 3
,432,649,973,1460,2189, 3284,4926,7389}. 107}
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Now, implicit midpoint method (6.2.3.3), uni- 10|

form timesteps 1 = 1/n as above

& approximate computation of v, by 1 New:

ton step, initial guess v

Measured error err = max |y;

j=1,..n
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Logistic ODE, ¥, =0.100000, = 5.000000
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Use linearized increment equations for implicit RK-SSM
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k; = f(yo) +hDf(yo)
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k; : fy0+hza,] ]) 1,...,s
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(Ea,]k]> , i=1,..., S.
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(7.4.0.5)
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Logistic ODE, Yo = 0.100000, % = 5.000000
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2-stage Radau RK-SSM, Butcher scheme
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order = 3, see Ex. 7.3.4.21. T
-10
Increments from linearized equations (7.4.0.5) ' |
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We monitor the error through err = 107 oy A
max |y; — y(t;)| . Lo
j=1m Rt 10° 107 107" 10°
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Please answer review questions

After you have watched the video take a short break and then try to answer the

review questions 7.4.0.10

Please avoid consulting the lecture document or tablet notes.




NumPDE@ETHZ




A

NumPDE@ETHZ

&/




NumPDE@ETHZ




