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ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Course Video
Section 9.2.1: Heat Equation

Prof. R. Hiptmair, SAM, ETH Zurich

Date: April 28, 2021
(C) Seminar fir Angewandte Mathematik, ETH Zlrich

Prerequisites.
e Differential operators grad, div and differentiation in time.

Dependency. |Lecture — Section 1.6] and [Lecture — Section 1.7]

2 Video and accompanying tablet notes may not match completely!
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[Corrections and updates may have been made in tablet notes.]

Note the change in chapter numbers, which also provide leading digits for labels:
Old Chapter6 — New Chapter9 , Old Chapter8 — New Chapter 11

Trailing digits in labels are not affected.
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‘ /pu dx+/ j-ndS = /fdx for all “control volumes” V (9.2.1.3)
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energy stored in V power flux through oV heat generation in V
0 = p(x): (spatially varying) heat capacity ([o] = JK~!), uniformly positive, cf. (1.6.0.6).
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2(pu) —div(k(x)grad u) = f in Q= QX]O,T[J. (9.2.1.6) z——‘>§(p(x)u) —div(x(x) gradu) = f in Q:=0Qx]0,T[, (§.2.1.6)
o —  u(x,t)=g(x,t) for (x,t) €9Q2x]0,T[, (9.2.1.7)
~  u(x,0) =ug(x) forall xeQ. (9.4.1.9)
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For .second order parabohc. e\{olutlons we can/must use the same spatial boundary conditions as for U, ( X ] — / X, b ) X e Q 52
stationary second order elliptic boundary value problems. ]

On 900, T| we can impose any of the boundary conditions discussed in Section 1.7:
o Dirichlet boundary conditions u(x, t) = g(x,t), see (7.1.1.7) (fixed surface temperature),
¢ Neumann boundary conditions j(x,t) - n = —h(x, t) (fixed heat flux through surface),
e radiation boundary conditions j(x, t) - n = ¥ (u(x, 1)),
and any combination of these as discussed in Ex. 1.7.0.10, yet, only one of them at any part of
dQ2x0, T[, see Rem. 1.7.0.9. f

\Z
Z

Samed @) |

,J)ZL/)!?@/ &%fég,

o (nitial condihens - [ ”%ém/m@{ b.o.” )

wlx 0) = u,(x)

— T~ —

(BUP




D Revrer quotons J.1.0.7F &  J2.1.14
[ e withaed, ot b oy ko ]

A and

Draw a space-time cylinder and mark where initial conditions 2#& (spatial) boundary conditions are im-
posed.

B

Evolution problems can also be posed on time-dependent spatial domains. For d = 2 sketch a general-
ization of the space-time cylinder for that case.

Outline an approach that can convert an evolution problem posed on a time-dependent spatial domain into
one living on a space-time cylinder.

C -

You can think of a reversible physical systems as those for which you could not tell whether a video
recording of them is played forward or backward.

Give examples of reversible and irreversible physical systems in our everyday world.

D

Cast the statement

The change is thermal energy stored in a body is balanced by the heat flow through its surface
into a mathematical formula and show that it holds for the linear heat equation with pure Neumann spatial
boundary conditions.

F

In a model for linear transient heat conduction in a homogeneous body let u = u(x,t) : O x [0, T] — R
designated the temperature distribution. What is the physical meaning of the following spatial boundary
conditions, here written in non-dimensional form:

1. u(x, t) = g(x,t), (x,y) € 02 x [0, T] (Dirichlet b.c.),

2. grad u(x,t) -n(x) =0, (x,y) € 9Q) x [0, T], (homogeneous Neumann b.c.),

3. grad u(x,t) - n(x) = u(x,t), (x,y) € 02 x [0, T], (impedance b.c.)?
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