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Section 9.2.3: Stability of Parabolic Evolution
Problems
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Date: April 28, 2021
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Prerequisites.
e (Bi-)linear forms
e Calculusin 1D
Dependency. [Lecture — Section 9.2.2]

Video and accompanying tablet notes may not match completely!
[Corrections and updates may have been made in tablet notes.]

Note the change in chapter numbers, which also provide leading digits for labels:
Old Chapter6 — New Chapter9 , Old Chapter8 — New Chapter 11
Trailing digits in labels are not affected.
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Lemma 9.2.3.§ Decay of solutions of parabolic evolutions
For f = 0 the solution u(t) of (7.1.2.4) satisfies

Il < e lluoll,, » Nu®ll, < e luoll, Vt €0, T,
where -y > 0 is the constant from (7.1.3.1), and |- || ., ||-||,,, stand for the energy norms induced by
a(-,-) andm(-,-), respectively.
Dissipation of energy in parabolic evolutions
> Exponential decay of energy during parabolic evolution without excitation

(“Parabolic evolutions dissipate energy”)
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Compute the solution of the 1D parabolic evolution problem

ou %u _

E(x,t)—w—o In]O,l[X[O,T],

u(0,t) =u(1,t)=0 foral 0<t<T,
u(x,0)= {x — sin(mx)}

forall 0<x<1.

Hint. Use the separation of variables approach with u(x, t) = sin(7tx)y(t) and determine the function

Y.

5.

For a sufficiently smooth function u© = u(x,t) compute the partial
w(x, t) == exp(yt)u(x, t) in terms of partial derivatives of 1.

(-

For a domain Q) C IR% and a vector ¢ € IR% we consider the bilinear form

derivative %%(x, t) for

b(u,v) := /Q grad u(x) -co(x)dx, u,ve H(Q).

Express %b(u, u) for a sufficiently smooth function 1 : Q) x [0, T| — R using partial derivatives of 1.

D

For a bounded domain Q) C IR? consider the parabolic evolution problem

%(p(x)u) —Au=0 in Q:=Qx]0,T[,
grad u(x,t) -n(x) =0 for (x,t) € 002x]0,T[,
u(x,0) = up(x) forall xeQ,

with (uniformly positive) coefficient function p : Q) — R and given initial data 1y € H'(Q)).
Can we expect u(x, T) — 0for T — co? What kind of exponential decay can we observe in this case?
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