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Z
O Method-of-lines ordinary differential equation

Combining (7.1.4.1) and (7.1.4.2) we obtain

(71.41) = {M{%f‘(f)}+Aﬁ(f)=¢(t) for0<t<T,

with

§.2.4.)
#(0) = iy -

> s.pd. stiffness matrix A € RNV, (A);; := a(b], bj,) (independent of time),
> s.pd. mass matrix M € RNV, (M);; := m(b}, b},) (independent of time),
> source (load) vector g(t) € RN, (g(t)); := £(t)(b,) (time-dependent),

> jip = coefficient vector of a projection of 1y onto Vjy .

Note:

(7.1.4.4) is an ordinary differential equation (ODE) for f + i(t) € RN
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Definition 6. ). |."4. Linear ODE

An ODE u = f(t,u) as introduced in § 7.1.5.1 is linear, if f(t, u) = A(t)u with a continuous func-
tion A: [ — RNV,

it Al = A [aubnomoug lngev 6DE ]

= She b)/ &&&W;%/%h .‘

A=8DS!, ScR"Nregular, D= diag(Ay,...,Ay) €RMY, (9.2.5.13)
> Deconpled scwler ODE s v components of 9 = Shu)
w = Dw

e/\:l (t—tp)
u(t) =S S . (9.2.5.14)
e’\-N(t_tO) /j\




V' Review quentions 9.2.5.15
[ Answer withoet éa?(&z‘wd(p ol Ddure deauments |

A

Let QO C R? be the volume of space occupied by a container filled with a fluid. Let v : Q — RR3 be a
stationary velocity field describing the movement of the fluid.

e Which property of v ensures that the fluid stays in the container?

e What is the physical interpretation of the solutions of the ODE y = v(y)?

Determine the evolution operator @ : R x R x D for the scalar ODE 1 = cos?y on the state space
D :=]—mn/2,7/2].

Hint. tan’ = cos 2.

L

The evolution of operator for an ODE on the state space R? is given by

| cos(t—s) sin(t—s) ) ’
(s, t,y) = _sin(t—s) cos(t—s) y, st6cR, yeR".

e Verify the so-called flow properties ®(t,t,y) =y and ®(s,t, ®(r,s,y)) = ®(r,t,y) for all
s,r,t €R,y € RZ,
e Find the associated ODE.
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