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Method-of-lines ordinary differential equation

Combining (7.1.4.1) and (7.1.4.2) we obtain

CA, M gpﬂ/j

d14a1) = {M{%f‘(‘)} +Aji(t) = §(t)
ﬁ(O) = ﬁo .
with

> s.p.d. stiffness matrix A € RN, (A)j:= a(bh,bh) (independent of time),
s.p.d. mass matrix M € RNN, (M);; := m(b’ ,bl) (independent of time),
source (load) vector ¢(t) € IRN, (@(t))i == E(t)(b};) (time-dependent),

#iy = coefficient vector of a projection of 1 onto V{ j,.

Note:

forO<t<T,
§.2.4.4)

VvV Vv

(7.1.4.4) is an ordinary differential equation (ODE) for t — ji(t) € RN
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M{%ﬁ(t)} LA =@(t)  for0O<t<T,
7(0) = g -

S, ODE o = Ll )
=%

7 >
7l = 7~ AR

(c] Bxplint Eov (Wo*7y = 4 +T 7%‘,@7]

> /z(g) _ Wﬁ(;,q,ﬁ%/&?(w = F@fmz MY 7//75074)4—4/7/@
T 7l

() lenplicdt Gulon » [ %75 = coroflt, Ve u)]

(4.2.4.4)

R 50 s AT AT
Fxg(, Eol.(3.2.7.2): il =i oM () - AR,
il Bl @473 i = (mA+ M) (MU 4 () )

. @Uh//@z%{ SSA :

Definition #4.3. 1. General Runge-Kutta method —

For coefficients b;,a;; € R, ¢; := Z}“?:] aij, i,j =1,..., s, s € IN, the discrete evolution ¥ of an
s-stage Runge-Kutta single step method (RK-SSM) for the ODE u = f(t, u), is defined by

=

ki := f(t+cT,u+7)_ajk;),
=

.....

i=1 s, ¥ Tui=u+1) bk;.
i—1

The k; €|V, are called increments. \ {W)/QL{&QZ (Mmmf @?y&'{ﬁbﬂj
v, N
. € K
=’ 1 £ (4] > -
> %, = M (U ter)- AT e 2 a; 7 )
{ =7 ¢

K; € RYN: Mk, + i T Ay = g'é(t]- +¢;T) — Aﬁ(j) , i=1,..., S, (2.2.7.7)
m=1

A = 50 47 Y Ry §2.7.8)

m=1

2 N xNs  lnaar 575% O/ 67%557%/75
Com pm notabion via Koneloy p%%%

@] [l +an) - AR

(..77) & (LOM+TAQA)|: | = :
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S K

(g2.7.9)
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Parabollc evolutlon problem in oné spatial dimension (IBVP):

Bc{g

ﬁz ; ou u .
W:W n [0,1])(]0,1[, ( 2711)
u(t,0) =u(t,1) =0 for0<t<1, u(0,x)=sin(mtx) for0<x <1.
B> exactsolution  u(t,x) = exp(—7m?t)sin(mx) .
4+ Spatial finite element Galerkin discretization by means of linear finite elements (V) ;, = S?,O(M))

on equidistant mesh M with meshwidth 1 := =
un o := liuo by linear interpolation on M, see Section 3.3.1.
Timestepping by explicit and implicit Euler method (7.1.7. 2) (7.1.7.3) with uniform timestep 7 :=

’
’

1

— Section 2.3.

1

Menitmed : enov® = ©h 52%4 [ Gyt ) e’ %Z)/e
1 4=
Space-time (discrete) L%-norm of error for explicit Euler timestepping:

N\M | 50 100 200 400 800 1600 3200

5 Inf  0.009479 0.006523 0.005080 0.004366 0.004011 0.003834
10 Inf Inf Inf Inf 0.001623 0.001272 0.001097
20 Inf Inf Inf Inf Inf Inf 0.000405
40 Inf Inf Inf Inf Inf Inf Inf
80 Inf Inf Inf Inf Inf Inf Inf
160 Inf Inf Inf Inf Inf Inf Inf
320 Inf Inf Inf Inf Inf Inf

(nf >bZUWU]D oy &M/ /)m,(/z/gKU

Space-time (discrete) L2-norm of error for implicit Euler timestepping:

N\M 50 100 200 400 800 1600 3200

5 0.007025 0.001828 0.000876 0.002257 0.002955 0.003306 0.003482
10 0.009641 0.004500 0.001826 0.000461 0.000228 0.000575 0.000749
20 0.010303 0.005175 0.002509 0.001149 0.000461 0.000116 0.000058
40 0.010469 0.005345 0.002681 0.001321 0.000634 0.000289 0.000116
80 0.010511 0.005387 0.002724 0.001364 0.000677 0.000332 0.000159
160 0.010521 0.005398 0.002734 0.001375 0.000688 0.000343 0.000170
320 0.010524 0.005400 0.002737 0.001378 0.000691 0.000346 0.000172

> uvncondthona! 6/4751%/

For explicit Euler timestepping we observe a glaring instability (exponential blow-up) in case of large

timestep combined with fine mesh.

Implicit Euler timestepping incurs no blow-up for any combination of spatial and temporal mesh

width.

Just a @hﬁ/ww;% of epl. Zvle) <
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ﬂr T = T / ﬁ;’d/w?m; ._,ﬁﬂ/)
W = Tﬂl/ﬂ > w = Dw 0{5500;%7/
&L Wy = ﬂl‘ W, —
s-pd, papices € ,QM/V
b ¥
M{H"?ﬁ(t)} +AGi(H) = (1) . @.24.4)
o Let @y, ..., @5 € RN denote the N linearly independent generalized eigenvectors satisfying
A, =AM§; , § M, =68;, 1<ij<N. @.2.7, ()
with positive eigenvalues A; > 0. Introducing the regular square matrices
T=[¢,..., ] € RNV (§.2.7.1%)
D := diag(Ay....,Ay) € RNV, (F.2.7.18)
we can rewrite (7.1.7.18) as
AT=MTD , T'MT=1. — WT)’; val q.2.7.19)

New  coeflicient vecky - 7&6} - T7'07(6)
MoL-0DE = T | UTP + AT -~

—
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Bilinear forms associated with parabolic IBVP and homogeneous Dirichlet boundary conditions
a(u,v) = /grad u-gradodx , m(u,v) = /u(x)v(x) dx, u,v€ Hy(Q).
O

Linear finite element Galerkin discretization, see Section 2.3 for 1D, and Section 2.4 for 2D.
Numerical experiments in 1D & 2D:

e () =]0, 1], equidistant meshes — Exp. 7.1.7.10
e “disk domain” Q) = {x € R% ||x|| < 1}, sequence of regularly refined meshes.
Monitored: largest and smallest generalized eigenvalue
Linear FE in 1D: lambda, Eigenvalues of Laplacian on unit disc
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Lemma 9.2.7.3(]. Behavior of of generalized eigenvalues
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—

—

Let M be a simplicial mesh and AM denote the Galerkin matrices for the bilinear forms a(u,v) =
Jograd u-gradvdx and m(u,v) = [ u(x)o(x)dx, respectively, and V; j, := Sp()(M)‘ Then

the smallest and largest generalized elgenvalues of Ay AMji, denoted by Amin and Amax, satisfy
! Amax > Chy2
ng\mingc 7 max_CM/

where the ‘generic constants” (— Rem. 3.3.5.10) depend only on the polybomial degree p, the
domain (), and the shape regularity measure p s.

F}Zp Fulﬂv n FE 50[7%/7 }) /f/ [ Cbg
[ atow Obsm with &%@‘{T j

£3273b ; (vmphml cnley @/Cfgﬂwﬁé%fwh

7:=T Mji
—(1 —'.—1 _.1-0. —(1 -4'—1 —(1
il =700 — v iagll B> ) =507 —1pgl)
l]f = ’7:(]— ) _ T/\,'I]éj) = 1]1.(j) = (1+]r,\,->j’7i(0) (9.2.7.36)
T
7 Uq‘ﬂ?
[‘1+T/\i'<1 and A; >0 = ] ]1Ln;l]l()—0 vVt >0. (9.2.7.34

-
§97738 ; @tdﬂ&%fé?ﬂ//fmﬂf gy-ssm (¢ =0 )
CMDL - 6DE ] o
M%ﬁ i A}l 0 transformation 77 = T Mff; %;71. — _/\i’7i 1=1,... N
RK‘SSMl JRK-SSM q2.7.40)
, , onil) =TTV (o ~ .
ﬁ(]) _ ‘I’t’t“ﬁ(]_]) transformation 7/ = T*Mji > ’]l(]) _ T;Jﬂ}ﬁ(} 1) i=1..N.
N N
DE Gv MbL-opE Dicudt edubon [2v RE -SSA7

nppied fo = - A4

Csealay GpE 7T
slab. of Pl-SSU v Mol - CDE

¥
ol Rk-SSU v vt = -Au
A =0

> Uncond .

7

Unconditional stability of single step methods

Necessary condition for universal unconditional stability of a single step method for semi-discrete
parabolic evolution problem (7.1.4.4)(“method of lines”):

The discrete evolution ¥} : R — IR of the single step method applied to the scalar ODE i = —Au
satisfies

A>0 =

lim (‘I’T)’uo =0 YupeR, VYVt >0. (4.2.7.43

]—)OO
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3 1 [T—2 A

SDIRK-2 scheme (order 2)

| A Stabldy fomctions |

(6.2.7.473) |RADAU-3 scheme (order 3)

| b7
¥ T = S(—At)u,
with rational stability function %
p : Nt wessamly (v plice
S(z)=1+2b (1-2%) "1 = det(;et (zlm_*;;;B ) 1= 1,...,1)" eR®. (6.2.7.47b) /V P

[> 4 ol o i =

RK -SSM yncond . dable &y MOL - GDE

7 1$E)] = 7 V=20

5 ‘ 20
Poen doably | S(z)] £ 2 &y Zrl
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Definition 6.2.7.46. L(77)-stability
A Runge-Kutta single-step method satisfying (7.1.7.45) is called L(77)-stable, if its stability function

S(z) according to (7.1.7.47b) satisfies
(i) [S(z)| < 1forallz <0,and
(i) “S(—o0)":= lim S(z)=0.

zER——00
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The implicit 2-stage Gauss-Radau method is described by the Butcher scheme

115 _ 1
3 ]32 112
lz 1
| 3 1
4 4

(6.2.4.4)

. General Runge-Kutta method

Definition

For coefficients b;, a;j € R, ¢; := ):;:1 aij,i,j = 1,...,s, s € IN, the discrete evolution ¥t of an
s-stage Runge-Kutta single step method (RK-SSM) for the ODE u = f(f,u), is defined by

i=1,...,s , ¥ Tu.= u+1217ik,-.

ki = f(t+ciT,u+ TZ(I,‘jkj) ,
=1 i=1

]

The k; € V) are called increments.

Butcher-scheme notation:

C1|a11 ain a1s
c| A 21421 " a2s -
b = S ., ¢beR, A€R™. (6.2.6.33)
CS asl . aSS
b, by ... ... b

¥

How does blow-up of a timestepping scheme for the method-of-lines ODE (6.2.4.4) manifest itself.

C

Explain, why it is enough to understand the behavior of a Runge-Kutta single-step method for the scalar
IVP

y=Ay , y(0)=1, AeR,

in order to predict its stability properties when applied to the method-of-lines ODE (6.2.4.4).

We discretize the parabolic initial-value problem

g _ div(a(x)gradu) =0 in Qx[0,T],

ot
u=0 on 9O x|[0,T],
u(x,0) =up(x) on Q,

in space by means of quadratic Lagrangian finite elements on sequencies of triangular meshes created
by uniform regular refinement. Method-of-lines timestepping relies on an explicit Runge-Kutta single-step

method with uniform timestep T > 0.
What relationship between timestep T and meshwidth /2,4 has to be imposed in order to ensure stability

of the resulting fully discrete evolution?
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Consider the evolution problem

t €10, T[— u(t) € H(Q) : ;it/u( vdS—i—/gradu t)-gradvdx =0 Yoe H(Q).

a20)

We perform spatial finite element Galerkin semi-discretization based on S?(M) in the spirit of the method
of lines.

1. Which problem does the application of explicit Runge-Kutta timestepping face?

2. Show that implicit Euler timestepping is feasible.

—~—

F
Show that Crank-Nicolson timestepping FO{* 'Hz( M ﬂL - 00[_:’

M{47(t) } + Afi(t) = §(1)

U
_,( . .
= —3A (D +7070) + 3@(t) + §(tj 1) , (6.275)

=(j—1)
M”

— i
T

for a standard parabolic evolution problem with s.p.d. bilinear forms m(-,-) and a(-, -) is unconditionally
stable.




