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g(p(x)u) —div(k(x)gradu) = f in Q:=Qx]0,T[, (9.2.1.6)
u(x, t) = g(x,t) for (x,t) € 002x]0, T, 4Z1A
u(x,0) = up(x) forall xe Q). (92.19)
Spahiad vacshioned mulatio lgé =0 |
/Spatial variational form of (7.1.1.5)~(7.1.1.7): seek t €]0, T[—s u(t) € H(Q) N
/ o(x)ii(t)v dx + / x) grad u( gradvdx:‘/ Flx,Ho(x)dx Yo e HY(Q), @224)
u(0) = up € HA(Q) . d.2.2.5) |
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tel0, Tl— u(t) € Vp : %m(u(t),v) +a(u(t),0) = L{t){v) YoeW,

u(0) =ug € V.

1st step: replace Vj with a finite dimensional subspace Vjj,, N := dim Vj, < o0

B> (Spatially) discrete parabolic evolution problem

(92.2.9)

m(y,(t), v,) + aluy(t),v,) = L(t)(vy,) Yov, € Vs,
€0, Tl u,(t) € Vo (i (t) h>' .( {z() h) ()(.h> W€V g041)
g uy(0) = projection/interpolant of 1 in Vp j, .
Method-of-lines ordinary differential equation
Combining (7.1.4.1) and (7.1.4.2) we obtain
M L3(t Aji(t) = @(t)  f t<T,
(7.1.41) = { (HHO} + 4RO =) for0<t< (g2.4.9)

ji(0) = i -

with
> spd. stiffness matrix A € RNN, (A);; := a(b], bj,) (independent of time),
> s.p.d. mass matrix M € RN, (M);; := m(b), bl ) (independent of time),
> source (load) vector g(t) € RN, (g(t)); := £(t)(b},) (time-dependent),
> iy = coefficient vector of a projection of 1y onto V.

Note:

(7.1.4.4) is an ordinary differential equation (ODE) for ¢ + i(t) € RY

Definition 7Z 331. General Runge-Kutta method —

For coefficients bi,aij e R, ¢ = Z;’:l Ajjs ,j=1,..., s, s € IN, the discrete evolution ¥ of an
s-stage Runge-Kutta single step method (RK-SSM) for the ODE u = f(f, u), is defined by

ki :=f(t+ct,u+T7 Za,]k]) , 1i=1,..., s , YAt Ty i = w41 Zb,’k,’ .
j=1 i=1

The k; € V are called increments.
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4 1D parabolic evolution problem: ;’tu —u'" = f(t,x) on ]0,1[x]0,1]

+ exact solution u(x, ) = (1 +*)e ™" sin(7x), source term accordingly

4 Linear finite element Galerkin discretization equidistant mesh, see Section 2.3, V), = S?,O(M), +
piecewise linear spatial approximation of source term f(x, t)

4+ implicit Euler timestepping (— Ex. 7.1.7.1) with uniform timestep T > 0
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error norm (T Y fu— u;,(T])|?;I1(Q)) -

P-mean of H'-seminom of error

< h - and T-dependence of error norm
Obervation:

T small

:error norm & 1 )
hrs small:  errornorm ~ T ] %

The error seems to behave like

error norm
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error norm ~ Cih y+Cot. 9.2.8.2)
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timestep A t 107 10

meshwidth h
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“Meta-theorem”4.2.8.5. Convergence of solutions of fully discrete parabolic evolution prob-
lems

Assume that
4 the solution of the parabolic IBVP (7.1.1.5)—7.1.1.8) is “sufficiently smooth” (both in space
and time),
+ its spatial Galerkin finite element discretization relies on degree p Lagrangian finite elements
(— Section 2.6) on uniformly shape-regular families of meshes;
+ timestepping is based on an L(7t)-stable single step method of order q with uniform timestep
T > 0.
Then we can expect an asymptotic behavior of the total discretization error according to

(Tﬁ lu — llh(Tj)l%Il(Q)>% < C(h.i/?\/l —I—Tq) ’

RN

Wh‘zc/ oy lmppzz/ oy

(9.2.8.6)

where C > 0 must not depend on h
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Refinement for fully discrete parabolic evolution problems

Guideline: spatial and temporal resolution have to be adjusted in tandem
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How will the assertion of Thm. 6.2.8.5 will probably have to be altered in case we face u(t) € H™(Q)),
m > 2, but u(t) ¢ H"*+1(Q) for all times ¢.
Theorem 6.2.8.5. Convergence of solutions of fully discrete parabolic evolution problems

Assume that
4 the solution of the parabolic IBVP (6.2.1.6)—(6.2.1.9) is “sufficiently smooth” (both in space
and time),
+ its spatial Galerkin finite element discretization relies on degree p Lagrangian finite elements
(— Section 2.6) on uniformly shape-regular families of meshes,
+ timestepping is based on an L(7t)-stable single step method of order q with uniform timestep
T > 0.
Then we can expect an asymptotic behavior of the total discretization error according to

( Z!u i (Th) 110 )5§ C(h.;/?\/l —I—Tq) , (6.2.8.6)

where C > 0 must not depend on h ,, T
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