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Prerequisites.

e Basic knowledge about elementary mechanics
Dependency. [Lecture — Section 1.2.1] and [Lecture — Section 9.1]

VAN
VAN

Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]

Note the change in chapter numbers, which also provide leading digits for labels:

Old Chapter6 — New Chapter9 , OId Chapter8 — New Chapter 11
Trailing digits in labels are not affected.

Duehon = 21 minules

VI Sewnd- Oder Linar Ewlecton
WBoblems

9.3 Linear Wave Eqé(mf/'ons

L hyperbolic evotedioy Wdﬁ'ﬂm
9.3.4 Moudds ¢ V{bméfrgz Membiames

), gza/a/) meael oy
shape ¢f membiane

u(x . %;)

_____

> 4 hgpuehion space
o V=HUR)

Taut membrane <+ 1 : A — R



@
Stulisnwny  veak otz hom o‘{ membizome ool

uev: /

where f: (A= R =
c: Q=R =

x) grad u - gradvdx = /f dx, Yoe H)(Q), (6.3.1.2)

density of vertical force,
uniformly positive’stiffness coefficient (characteristic of material of the mem-
brane).
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= Homogeneous linear wave equation in variational form (Dirichlet boundary conditions):
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V(t) := {v:]0,T[— HY(Q): v(x,t) = g(x,t) forx €9Q, 0 < t < T}
(with continuous time-dependent Dirichlet data g : 9Q2x |0, T[— RR.)
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On 02 x 0, T| we can impose any of the boundary conditions discussed in Section 1.7:

e Dirichlet boundary conditions u(x,t) = g(x,t) (membrane attached to frame),

e Neumann boundary conditions j(x,t) - n = 0 (free boundary, Ex. 1.5.3.11)

e radiation boundary conditions j(x, f) - n = ¥ (u(x,t)),
and any combination of these as discussed in Ex. 1.7.0.10, yet, only one of them at any part of
002x |0, T, see Rem. 1.7.0.9.
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Additional unknown: velocity  v(x,t) = %(x, t)
Fu =u, o~
p(x)w —div(c(x)gradu) =0 B> {p(x)f} — div(c(x) grad 1) in Q| L6.31.18)

with initial conditions

u(x,0) =up(x) , v(x,0)=1v9(x) for x Q. (6.3.1.19)
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The movement of a taut membrane also subject to friction can be modeled by an additional vertical force
density proportional to the local velocity:

o2u Ju

fx) = —p(0) 57 ~ 105

with uniformly positive friction coefficient ¢ = e(x). Give the spatial variational formulation for a mem-
brance model with friction.

Hint. The dynamic membrane model with a generic force density f = f(x) is:

uev: /o(x)grad u-gradvdx = /f(x)v(x) dx, Yove H}(Q). (6.3.1.2)
0 0
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Which initial-boundary value problem describes the frictionless movement of a membrane clamped to a
flat and level frame on three sides of a square, but free on the fourth side under the influence of gravity?

C .

The proagation of sound in space can be described by the following first-order system of linear partial
differential equations:
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Here v = v(x,t) is the velocity field ([v] = ms™1), p = p(x,t) the pressure field ([p] = Nm~?2),
00 = po(x) a uniformly positive density ([oo] = krm3), and ¢ c(x) the local speed of sound
([c] = ms™1.
1. Derive a second-order PDE governing the evolution of the pressure field.
2. At hard walls we have v - n = 0, where n is a unit vector normal to the wall. Which spatial boundary
conditions does this entail for the second-order PDE?

),

For symmetric positive definite matrices M,A,B € R"™" convert the second-order ODE for

ji : [0, T] — R"
Pu i

into an equivalent first-order ODE in the standard form i = f(u).
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