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0 \/ Theorem 6.3.2.16. Energy conservation in wave propagation
Ifu: Q — R solves (6.3.2.15), then we have conservation of total energy in the sense that
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kinetic energy elastic (potential) energy, see (1.2.1.19)
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u(x,0) = up(x), al:(Y 0)=0, x<0, (6:3.2.11) /
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Homogeneous Dirichlet or Neumann boundary conditions on (parts of) Q) model the reflection of = 1/ | N ( i 3\ Q . f 5 ) —
waves (at those parts of d()).
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We consider the Cauchy problem for the constant-coefficient linear wave equation in R%:

aZ
y;‘—Auzo in RYxR" .

For k € R?, ||k|| = 1, a solution of (6.3.2.18) of the form
u(x,t) = Reexp(i(k-x—wt)), weR,

is called a plane-wave solution. Find w as a function of k.

Consider the Cauchy problem for the 1D wave equation

Pu  ,0%u ou

c>0: w—cﬁ=0 , u(x,0)=up(x), =—(x,0)=0v0(x), xR,

and recall the d’Alembert solution

x+ct
u(x, t) = $(up(x + ct) + up(x — ct)) + 5 / vp(s)ds .

x—ct

(6.3.2.18)

(6.3.2.19)

(6.3.2.2)

(6.3.2.4)

Which relationship must be satisfied for the initial data 1o and 7o such that you obtain a solution that

propagates only to the right?
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We study the following initial-boundary value problem for the 1D linear constant-coefficeint wave equation

’u  %u
—0 i +
w—w =0 in ]O,l[X]R ,
u(0,t) =u(l,t) =0 Vvt>0, (6.3.2.20)
d
u(x,0) = up(x) , a—l:(x, 0) =ovp(x), 0<x<1.
1. In the x — t-plane sketch the precice domain of influence of the interval [1, 3].

2. What is the domain of dependence for the point [Oﬂ ?

Hint. Remember that homogeneous Dirichlet boundary conditions for the 1D wave equation model a
reflection of the wave at the boundary.
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Consider the abstract variational wave equation

u=u(t) € Vo:m(ii,v) + +b(u,v)+a(u,v) =0 YoeVy, (6.3.2.21)

where V| is a vector space and m, a are symmetric positive definite bilinear forms on Vj;. Which properties
of the bilinear form b ensure an exponential decay of the energy

E(t) = %m(tl(t),u(t)) + %a(u(t),u(t))

when t — u(t) solves (6.3.2.21).
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