

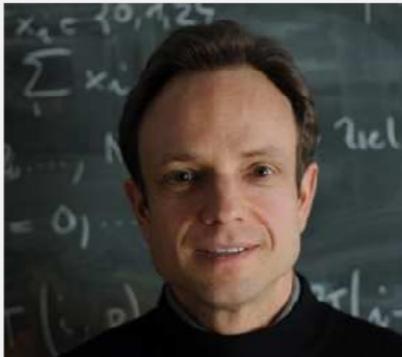
Course Video

Section 9.3.3: Method of Lines for Wave Propagation

Prof. R. Hiptmair, SAM, ETH Zurich

Date: April 28, 2021

(C) Seminar für Angewandte Mathematik, ETH Zürich



Dependency. [Lecture \rightarrow Section 9.3.2], [Lecture \rightarrow ??], and [Lecture \rightarrow Section 2.6]. Useful is [Lecture \rightarrow Section 9.2.4].

Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]

Note the *change in chapter numbers*, which also provide leading digits for labels:

Old Chapter 6 \rightarrow New Chapter 9 , Old Chapter 8 \rightarrow New Chapter 11

Trailing digits in labels are not affected.

Duration: 13 minutes

VI. Second-Order Linear Evolution Problems

9.3 Linear Wave Equations

9.3.3. Method of Lines for Wave Propagation

▷ Same idea as for heat equation
Galerkin in space

$$t \in]0, T[\mapsto u(t) \in V_0 : \quad \begin{cases} m\left(\frac{d^2 u}{dt^2}(t), v\right) + a(u(t), v) = 0 & \forall v \in V_0 \\ \text{[Initial condition]} & u(0) = u_0 \in V_0, \quad \frac{du}{dt}(0) = v_0 \in V_0 \end{cases} \quad \begin{matrix} \text{ll6)(v)} \\ \text{test space} \\ \checkmark \text{ does not depend} \\ \text{on time} \end{matrix} \quad (6.3.3.2)$$

I : Replace $V_0 \rightarrow V_{0,h} \subset V_0$, $\dim V_{0,h} = N$

▷ independent of time

$$t \in]0, T[\mapsto u(t) \in V_{0,h} : \quad \begin{cases} m\left(\frac{d^2 u_h}{dt^2}(t), v_h\right) + a(u_h(t), v_h) = 0 & \forall v_h \in V_{0,h} \\ u_h(0) = \text{projection/interpolant of } u_0 \text{ in } V_{0,h}, \\ \frac{du_h}{dt}(0) = \text{projection/interpolant of } v_0 \text{ in } V_{0,h}. \end{cases} \quad \begin{matrix} \text{ll6)(v)} \\ \text{approximate} \\ \text{initial cond.} \end{matrix} \quad (6.3.3.3)$$

2

II. Ordered basis $\mathcal{B} = \{b_1, \dots, b_n\} \subset V_{a,b}$

$$\text{desired basis } \mathcal{B} = \{b_h^1, \dots\}$$

$$u_h(t) = \sum_{j=1}^1 p_j(t) b_h^j$$

▷ LWE - MOL - ODE : (2nd-order)

$$(6.3.3.3) \Rightarrow \begin{cases} \mathbf{M} \left\{ \frac{d^2}{dt^2} \vec{\mu}(t) \right\} + \mathbf{A} \vec{\mu}(t) = \vec{\Psi}(t) \text{ for } 0 < t < T, \\ \vec{\mu}(0) = \vec{\mu}_0, \quad \frac{d\vec{\mu}}{dt}(0) = \vec{v}_0. \end{cases} \quad (6.3.3.4)$$

$\uparrow \quad \uparrow \quad \rightarrow \text{State space } \mathbb{R}^N$

- ▷ s.p.d. stiffness matrix $\mathbf{A} \in \mathbb{R}^{N,N}$, $(\mathbf{A})_{ij} := a(b_h^j, b_h^i)$ (independent of time)
- ▷ s.p.d. **mass matrix** $\mathbf{M} \in \mathbb{R}^{N,N}$, $(\mathbf{M})_{ij} := m(b_h^j, b_h^i)$ (independent of time),
- ▷ source (load) vector $\vec{\varphi}(t) \in \mathbb{R}^N$, $(\vec{\varphi}(t))_i := \ell(t)(b_h^i)$ (time-dependent),
- ▷ $\vec{\mu}_0 \hat{=} \text{coefficient vector of a projection of } u_0 \text{ onto } V_{0,h}$.
- ▷ $\vec{v}_0 \hat{=} \text{coefficient vector of a projection of } v_0 \text{ onto } V_{0,h}$.

$$D \quad E_n(t) = \frac{1}{2} \vec{p}(t)^T A \vec{p}(t) + \frac{1}{2} \vec{p}(t)^T M \vec{p}(t)$$

\hookrightarrow conserved discrete energy.

Conversion to 1-st-order ODE:
Auxiliary function: $\vec{v}(t) = \vec{p}(t)$

11

2nd-order ODE -

$$\mathbf{M} \left\{ \frac{d^2}{dt^2} \vec{\mu}(t) \right\} + \mathbf{A} \vec{\mu}(t) = 0$$

← auxiliary unknown $\vec{v} \equiv \vec{u}$

State space
 \mathbb{R}^{2N}

$$\begin{cases} \frac{d}{dt} \vec{\mu}(t) = \vec{v}(t) , \\ \mathbf{M} \frac{d}{dt} \vec{v}(t) = -\mathbf{A} \vec{\mu}(t) , \end{cases} \quad , \quad 0 < t < T .$$

(6.3.3.6)

with initial conditions

$$\vec{\mu}(0) = \vec{\mu}_0 \quad , \quad \vec{\nu}(0) = \vec{\nu}_0 \quad .$$

(6.3.3.7)

③

Review question 9.3.3.9:

[to be solved without looking at notes]

A:

The **method-of-lines semi-discretization** of the variational evolution equation

$$t \in [0, T] \mapsto u(t) \in V_0: \quad m\left(\frac{\partial^2 u}{\partial t^2}(t), v\right) + a(u(t), v) = \ell(t)(v) \quad \forall v \in V_0,$$

V_0 a vector space, leads to an ordinary differential equation of the form

$$\mathbf{M} \frac{d^2 \vec{\mu}}{dt^2}(t) + \mathbf{A} \vec{\mu}(t) = \vec{\varphi}(t),$$

with $t \mapsto \vec{\mu}(t) \in \mathbb{R}^N$, $t \mapsto \vec{\varphi}(t) \in \mathbb{R}^N$, and matrices $\mathbf{A}, \mathbf{M} \in \mathbb{R}^{N,N}$.

1. Give formulas for the entries of \mathbf{A} , \mathbf{M} , and $\vec{\varphi}(t)$.
2. What is the meaning of $t \mapsto \vec{\mu}(t)$?

B:

In order to convert a variational evolution problem into an ordinary differential equation following the policy of the method of lines, we have to choose a basis of the discrete trial and test space $V_{0,h} \subset V_0$. How does the solution $t \mapsto u_h(t) \in V_{0,h}$ of the semi-discrete evolution problem depend on the choice of basis?

C:

We consider the hyperbolic linear evolution problem

$$u(t) \in H_0^1(\Omega): \quad \int_{\Omega} \rho(x, t) \frac{\partial^2 u}{\partial t^2}(x, t) v(x) + \sigma(x, t) \mathbf{grad} u(x) \cdot \mathbf{grad} v(x) \, dx = 0 \quad \forall v \in H_0^1(\Omega),$$

$$u(x, 0) = u_0(x), \quad \frac{\partial u}{\partial t}(x, 0) = v_0(x), \quad x \in \Omega,$$

where $\rho: [0, T] \times \Omega \rightarrow \mathbb{R}$ and $\sigma: [0, T] \times \Omega \rightarrow \mathbb{R}$ are uniformly positive coefficient functions.

We perform a method of lines spatial semi-discretization based on $V_{0,h} \subset H_0^1(\Omega)$ equipped with a basis $\{b_h^1, \dots, b_h^N\}$, $N := \dim V_{0,h}$.

1. Write down the resulting ordinary differential equation (ODE) and characterize its building blocks.
2. Describe how one can obtain the initial values for the method-of-lines ODE, if $V_{0,h}$ is a Lagrangian finite element space.

