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Dependency. [Lecture — Section 9.3.2], [Lecture — ??], and [Lecture — Section 2.6]. Useful is [Lecture
— Section 9.2.4].

Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]

Note the change in chapter numbers, which also provide leading digits for labels:
Old Chapter6 — New Chapter9 , Old Chapter8 — New Chapter 11

A Trailing digits in labels are not affected.
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m(d—l,"u),v) +a(u(t),v) =0 Voce vo,%é/“’fﬁ?} dW
t €]0, T[— u(t) € Vo at s m hme (6.3.3.2)
[ ineHad (/}’W‘/M'n] u(0) =ug€Vo , —-(0)=wvo€Vp.
T Relae V — Vo, Vi dim =~/
(A (nclependent /% fime
( dzll] ,‘(bI(V'J
m( dtz’(t),v,,) +a(uy(t), o) =M Yoy € Vi,
t€]0, Tl— u(t) € Vo, = { uy(0) = projectionfinterpolantof ug in Vp, , (6.3.3.3)
duy, . , \&@’Z’;{*W
\W(O) = projection/interpolant-of vy in Vj;, . | n o
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(6.333) = {M{‘W’m} +j;y(t) ) o<, (6.3.3.4)
i(0) =#y , 7(0)="7o.
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s.p.d. stiffness matrix A € RNV, (A);; := a(b],
s.p.d. mass matrix M € RNV, (M);; := m(b), b!,) (independent of time),
source (load) vector ¢(t) € RN, (¢(t)); := £(t)(b}) (time-dependent),
1, = coefficient vector of a projection of 1y onto V).

v = coefficient vector of a projection of vy onto V) .
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with intial conditions
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TS g xiliary unknown T = i

d

) = V(1)

d

M—v

dt

Vi) = P

M{gzﬁ(t)} L AG(H) =0

, 0<t<T.

(t) = —Aji(t),

(6.3.3.6)

(6.3.3.7)
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The method-of-lines semi-discretization of the variatonal evolution equation

2

t €[0,T] — u(t) € Vp: m(w(t),v) +a(u(t),v) =£(t)(v) YveV,

Vo a vector space, leads to an ordinary differential equation of the form

d*ji . —
Mm(t) + Aji(t) = ¢(t) ,
with £ +— 7i(t) € RN, t — @(t) € RN, and matrices A, M € RNV,
1. Give formulas for the entries of A, M, and ¢(t).
2. What is the meaning of t — i(t)?

B

In order to convert a variational evolution problem into an ordinary differential equation following the policy
of the method of lines, we have to choose a basis of the discrete trial and test space V|, C Vj. How does
the solution f — uy, (t) € V), of the semi-discrete evolution problem depend on the choice of basis?

We consider the hyperbolic linear evolution problem

2
p(x, f)%(x, Ho(x) +o(x,t) gradu(x) -grado(x)dx =0 Yo € H)(Q),

Ju
E(xro) - U()(x) 7

u(t) € HY(Q): /Q

u(x,0) = ug(x) , xeQ,
where p: [0,T] x Q3 — Rando : [0, T] x Q — R are uniformly positive coefficient functions.
We perform a method of lines spatial semi-discretization based on Vj;, C H(%(Q) equipped with a basis
{b},...,bN}, N := dim V.
1. Write down the resulting ordinary differential equation (ODE) and characterize its building blocks.
2. Describe how one can obtain the initial values for the method-of-lines ODE, if V}, ;, is a Lagrangian
finite element space.
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