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Video and accompanying tablet notes may not match completely!

[Corrections and updates may have been made in tablet notes.]

Note the change in chapter numbers, which also provide leading digits for labels:
Old Chapter6 — New Chapter9 , Old Chapter8 — New Chapter 11
Trailing digits in labels are not affected.
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Model problem: wave propagation on a square
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u(x,t) =0 on 90x|0,T[,

u(x,0) = up(x) %(x,O) =0. 4= 0

(membrane in flat frame, displaced, but at rest at ini-
tial time)
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Initial data 1p(x) = max{0, z — ||x||}, vo(x) =0,
M = “structured triangular tensor product mesh”, see Fig. 232, n squares in each direction,
linear finite element space Vi o = S?,O(M), N := dim S?’O(M) = (n—-1)%,
All local computations (— Section 2.7.5) rely on 3-point vertex based local quadrature formula “2D
trapezoidal rule” (2.4.6.10). More explanations will be given in Rem. 6.3.4.18 below.
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Rerﬁember that Crank-Nicolson timestepping for the linear ODE

2—o
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gives rise to the recursion
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while the Stormer-Verlet timestepping yields
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Generalize these timestepping schemes to the second-order ODE

ii(t) = f(t,u(t)) , f:RxR"—R",

j=

= A" +4(t)) .

1,2,...,

1,2,3,....
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We consider the linear non-autonomous ODE

(1) = AWR®) () RV, (63422

with a skew-symmetric matrix-valued function t — A(t) € RNV thatis, A(t)" = —A(t). We apply the
implicit midpoint method with uniform timestep T > 0 to discretize (6.3.4.22) in time, which produces the
sequence i), j = 0,1,2,.... Show that ”ﬁ(])H = Hﬁ(o) H for all j.

Hint. The discrete evolution operator of the implicit midpoint rule when applied to the ODE u = f(t,u) is

Y ui=w: w=u+tf(t+37,3(w+u)).

o
What is mass laumping and why is it important in the context of the leapfrog timestepping scheme
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for the method-of-lines ODE

Explain the statement

There is no drift of total energy when using leapfrog timestepping for the method-of-lines ODE
for a linear wave equation.
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