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In attempt to solve the problem 2.13 b) and then understand the solution | have faced the following misunderstanding: In the problem we should implement the following general formula for the element
matrix:
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The code of the solution includes the following for the gradients of basis functions calculation:

Eigen:: Matrix <double, 2,J3> gradients_ref(2, 3);
gradients_ref << —1, 1, 0, —1, 0, 1;
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Elgen : MatrixXd gradients_param (2, 3);
gradients_param = JinvT.block(0, 2 % i, 2, 2) x gradients_ref;

| do not fully understand how this code implements the formula these gradients are calculated with? (I see that they should implement here DO*{-T}grad(b*{i}))
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C++11 code 2.13.3: Sub-problem (2-13.b): Implementation of Eval () member function of

AnisotropicDiffusionElementMatrixProvider for triangles => GITHUB 4 b (\
2 // I. OBTAIN COORDINATES OF THE MIDPOINTS W
3 // I.i Hard-code the midpoints of the edges on the reference triangle ~

4 Eigen:: Matrix<double, 2, 3> midpoints_ref(2, 3); f’m

5 midpoints_ref << 0.5, 0.5, 0, 0, 0.5, 0.5;

6 // I.ii Obtain the midpoints of the parametrized triangle

7 auto midpoints_param = cell_geometry —>Global (midpoints_ref);

8

9 // II. COMPUTE LOCAL INTEGRATION DATA

10 // II.i Compute the inverse of the tranposed Jacobian

i // (T T)M=1} = T+ (JT+J) (-1}

12 // of the parametrization map at the midpoints of the reference triangle

13 const Eigen::MatrixXd JinvT (

14 cell_geometry —>JacobianinverseGramian ( midpoints_ref));

15 // II.ii Compute the integration element

16 // integration element(x) = sqrt(det (J"T+J))

17 // where J is the Jacobian of the parametrization map

18 const Eigen::VectorXd integration_element(

19 cell_geometry —>IntegrationElement ( midpoints_ref));

20 // II.iii Hard-code the gradients of the reference basis fi ctﬁns

21 Eigen:: Matrix<double, 2, 3> gradients_ref(2, 3); j( /é 7I<7 3

2 gradients_ref << —1, 1, 0, —1, 0, 1; 2_13 05 cpp.aderr;l)

. U

24 // III. PERFORM NUMERICAL QUADRATURE

25 element_matrix = Eigen::MatrixXd::Zero(3, 3); < <
2 for (int i = 0; i < 3; i++) { // for each local degree of freedom r~—-> Z_{mp WV Wm{l 5
27 // III.i Evaluate the diffusion tensor

28 Eigen::Vector2d anisotropy_vec =

2 anisotropy_vec_field_(midpoints_param.col(i));

30 Eigen:: Matrix2d diffusion_tensor =

31 Eigen::Matrix2d :: Identity (2, 2) +

anisotropy_vec * anisotropy_vec.iranspose();
// IITI. ii Compute gradients of the global basis functions

32

33

3 Eigen::MatrixXd gradients_param (2, 3);

5 gradients_param = JinvT.block(0, 2 % i, 2, 2) = gradients_ref; <[ ﬂl‘f( /Z,— Z\QJ
% Z ¢

// III. iii Compute local contribution to the element matrix

a7 for (int j = 0; j < 3; j++) {
38 for (int k = 0; k < 3; k++) {
39 double integrand = (gradients_param.col(j).transpose() *
40 diffusion_tensor * gradients_param.col(k));
41 element_matrix (j, k) += integration_element (i) * integrand;
42

}
43 }
4 }
45 element_matrix *= 1. / 6.;
46 break ;
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Lemma 2.8.3.10. Transformation formula for gradients

For differentiable u : K — IR and any diffeomorphism ® : K — K we have 2 8 31 lem:Gtr

(grad.(®*u))(x) = (D@ (x)) " Sgradx u)(<I>(Z€))J v¥e K. (2.8.3.11)

=®" (g;;d u)(x)
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Chumbnshe : T == fx/c),z:)

Acurve T := (9(7),7) : [0,T] — Rx]0,T[in the (x,t)-plane is a characteristic curve for the
conservation law (8.2.2.1), if
( ) 8 2 18 def:chari

L y(1) = flur(x), 1), 0<T<T, (8.2.2.4)

where u is a continuously differentiable solution of (8.2.2.1).

Lemma 8.2.2.6. Classical solutions and characteristic curves 8 2 21 _| em-solcha

Smooth solutions of (8.2.2.1) are constant along characteristic curves.
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(D)) (1(1),7) + 2 (1), 1) = 0.
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