D

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Numerical Methods for
Partial Differential Equations

Prof. R. Hiptmair, SAM, ETH Zurich

Spring Term 2020
(C) Seminar fir Angewandte Mathematik, ETH ZUrich

p

R & A Session
May 25, 2020

Hagg{hgy bovondany eatilies 1 [ehr FEAA+
(¢) Traf menf A% Diackled BUPs
(i) ﬁéﬁ@/p{% é% Wm/ conhibvbene b

-5 HW&,&:
aluv) = fgmé/a'g/ﬁ%y/x t [uv dS
S0l 052

Calvbin diochzabon banecd on ST0M)
Tool ﬂﬂg Ealher On B&UWy

@

CodimMeshDataSet< bool > If::mesh:utils::flagEntitiesOnBoundary (const std::shared_ptr< const Mesh > & mesh_p,
If::base::dim_t codim

)

/
flag entities of a specific co-dimension located on the boundary

Parameters = 7 g < 0/ %@

codim co-dimension of entities to be flagged, must be > 0.

Returns
an object of a boolean-valued CodimMeshDataSet (= an array of boolean values index by entities) for the entities of the specified co-
dimension

An entity of co-dimension 1 is located on the boundary, if it is adjacent to exactly 1 cell (= entity of co-dimension 0).
The boundary of a mesh is the set of all entities that are either entities of co-dimension 1 located on the boundary or sub-entities of those.
The implementation of this function relies on CountNumSuperEntities().

The following example code shows how to create a flag array for marking the boundary edges of a 2D mesh:

std::shared ptr<lf::mesh::Mesh> mesh p{ m

1f::mesh::test utils::GenerateHybrid2DTestMesh(3)};
1f::mesh::utils::CodimMeshDataSet<bool> bd flags{ }
2 1}}; L

1f::mesh::utils::flagEntitiesOnBoundary({mesh_|

aluv) = fgm/a-g/zm/y&/x *f wv dS -
o) P52

C++ code 6.6.10: Implementation of assembly for matrix M =* GITHUB

0w O N OO 0 s W N

28

31

If:

return M; /I\

:assemble :: COOMatrix<double> buildM(

const std::shared_ptr<If ::uscalfe :: FeSpaceLagrangeO1<double>> &fe_space p) {
// I. TOOLS AND DATA

// Pointer to current fe space and mesh

std :: shared_ptr<const If ::mesh::Mesh> mesh p(fe space p—>Mesh());

// Obtain local->global index mapping for current finite element space

const If ::assemble::DofHandler &dofh{fe_space p—LocGlobMap () };

// Dimension of finite element space

const If ::uscalfe::size type N_dofs(dofh.NumDofs ()) ;

// II : ASSEMBLY

// Matrix in triplet format holding Galerkin matrix, zero initially.

If ::assemble :: COOMatrix<double> M(N_dofs, N_dofs) ;

// Obtain an array of boolean flags for the edges of the mesh, ’true’

// indicates that the edge lies on the boundary

auto bd_flags{If ::mesh:: utils :: flagEntitiesOnBoundary(mesh p§ 1)};

// Creating a predicate that will guarantee that the computations are carried
// only on the edges of the mesh using the boundary flags

auto edges_predicate = [&bd _flags](const If ::mesh:: Entity &edge) — bool {

}.return bd_flags (edge); __ o /OWW ’}Ck(ek 0;[Z&/ﬁ@

// Coefficient function used in the class template MassEdgeMatrixProvider
auto eta =

If ::mesh:: utils :: MeshFunctionGlobal ([](Eigen::Vector2d x) — double { return

1.0; 1),
If ::uscalfe :: MassEdgeMatrixProvider<double, decltype(eta),
decltype (edges_predicate)>

edgemat_builder (fe_space p, eta, edges_ predicate);
// Invoke assembly on edges by specifying co-difsension = 1
If ::assemble :: AssembleMatrixLocally (1, dofh, dofh, edgemat builder, M);

alos mzr/v/ﬂ_r b Ll rac
el

6%}2@ ihen fon whidh ;Mé/m/&

©,

CodimMeshDataSet (std::shared_ptr< const Mesh > mesh, dim_t codim)

construct data vector indexed by entities of a particular co-dimension More...
template<class = typename std::enable_if< std:is_copy_constructible<T>:value>:type>

CodimMeshDataSet (std::shared_ptr< const Mesh > mesh, dim_t codim, T init)

construct and initialize data vector indexed by entities of a particula co-dimension More...

T & operator() (const Entity &e)
Get a (modifiable) reference to the data stored with entity e. More...

const T operator() (const Entity &e) const override
Get the data stored with entity e. More...

bool DefinedOn (const Entity &e) const override
Does the dataset store information with this entity? More...

Fur & b o Y

—>

NumPDE@ETHZ

NumPDE@ETHZ

NumPDE@ETHZ

NumPDE@ETHZ

