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Third main ingredient of FEM: locally supported basis functions

(see Section 2.2 for role of bases in Galerkin discretization)

Basis functions b}z,. e b{f for a finite element trial/test space V}) ;, built on a mesh M must satisfy:
(B1) B :={b},..., bN}isbasisof Vp, > N =dimV,

(°By) each b}, is associated with a single geometric entity (cell/edge/face/vertex) of M,

(B3) supp(b,) € Lr{f: K € M,p C K}, if b}, associated with cell/edge/face/vertex p.
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Support of node-associated basis Support of edge-associated basis Support of cell-associated basis
function function

function, cf. Fig. 96
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Theorem 3.3.2.21. Error estimate for
For any u € C%(Q)) and 2D piecewise linear interpolation 11 : C°(Q)) — SY(M), M a triangular
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where h 4 denotes the mesh width (— Def. 3.2.1.4) and pq the shape regularity measure (—
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Def. 3.3.2.20) of M.
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Theorem 1.9.0.10. Multiplicative trace inequali

AC=C(Q) > 0: ||u||L 20) < Cllull 2y - 1l g Yu e H(Q) .
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