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Kl - Reveew Wfforz [ 4.3.&
A) State the linear variational problem equivalent to the minimization of

o quadakc frchond = J:R2 SR, J(x) = 2|34+ v+

Definition 1.2.3.2. Quadratic functional

A quadratic functional on a real vector space Vjy is a mapping | : V — IR of the form

J(u) := %a(u, u)—L(u)+c, ueVy, (1.2.3.3)

where a : Vj X Vj — R is a symmetric bilinear form (— Def. 0.3.1.4), £ : V — R a linear form,
andc € R.

R & A Session Mach |

Ix) = Xx+ [ [x+l , xe R
L) == [x

Theorem 1.4.1.8. Equivalence of quadratic minimization problem and linear variational prob-
lem

e alyy)=dxy

For a (generalized) quadratic functional ] (v) = %a(v,v) — £(v) + ¢ on a vector space V and with
a symmetric positive definite bilinear forma : V x V — IR are equivalent:

(i) The quadratic minimization prob/en;1 for | has unique minimizer v, & V over the affine sub-

spaceV =g+ Vp, g€ V. [ \/éam_y\f \gpﬁé(/:{

(i) The linear variational problem

ueV: a(u,v)=L0v) YoeV,,

has a unique solution u, € V.
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Let V be a vector space, a: V x V — IR a symmetric positive definite bilinear formand /: V — R a
linear form bounded w.r.t. to the energy norm ||-||. induced by a(c;-). Assuming that the quadratic func-

tional (vl a(v,) )
J(v) := %a(v,v) —Ll(v)+c, veV, &— (1.2.3.3)
has a minimizer, what is the minimal value of | expressed
e interms of ||u]|,, or &/\"‘—/&7(0(% T/)m (/ /| &
e interms of /(u), _ X
where u € V satisfies ( — M 1S the miimAdeer 0/ j )
L\/P a(u,v) =L(v) YoeV. L
;/m) = Sala,m) - Lla)4
( LyP) <
= = Z // M //0( +

= JhAllu) + C

C/ Sobolev space A Pachows vmdub&z o D%
For a bounded j;)main Q) C R? consider the second-order linear elliptic Dirichlet problem

LVP: u e Hy(Q): /(a(x) grad u(x)) - grad v(x) dx = /f(x)u(x)dx Yo € H}(Q) .

e ol

with uniformly positive definite & : Q) — R>?. = 4(v)
1. For what source functions f will the right-hand side functional still be continuous on HA(Q)?

a reasonably general sufficient condition.)
2. Let u € H(%(Q) be the solution of the above variational problem. For which norms introduced in

Section 1.3 (J € {H'(Q)), L?(Q)}) does the estimate

lullo < Clifllio

hold with a constant C > 0 independent of f?
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Definition 1.2.2.9. Uniformly positive (definite) tensor field

An matrix-valued function A : () — R™"" n € N, is called uniformly positive definite, if

= >0: (A(x)z)-z>a ||z||* VzeR" (1.2.2.10)

for almost all x € (), that is, only with the exception of a set of volume zero.

2 & (x) =

= w2/ (UFD)
> Jal = gw/é(/x)/g/x) gl a ) AA
( [0p) R .
S = VA | ) ol
= C ///(///71 o)
Theorem 1.3.4.17. First Poincaré-Friedrichs inequality
IfQ C R d € N, is bounded, then
|ully < diam(Q) || grad u||, Yu € H}(Q) .
Nom - equuivitence - c Ny, = Vb, = C//M//H/[)
Ve b, (2)
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llv]|_HM vs |v|_HM
by Nico Graf - Sunday, 28 February 2021, 6:33 PM

I don't understand the difference between the norm ||v||_H"1 and the "absolute value?" |v|_H"1.

So it would be great if you can explain the notation |v|_H"1 again.

Definition 0.3.1.10. Norm (on a vector space) —

A norm ||-||,, on an R-vector space V is a mapping |||, : V — R, such that

(definiteness) ||v||ly, =0 <= v=0 YoeV (N1)
(homogeneity) [|Av]l, = [Al[o]l, VAER, YoeV, (N2)
(triangle inequality) ||w + |, < ||w||,, + |||, Yw,0oe V. (N3)

Definition 1.3.4.3. Sobolev space

The space of integrable functions on () with square integrable gradient that vanish on the boundary
00},

Vo := {v: Q +— Rintegrable: v = 0 on 9}, / | grad v(x) > dx < oo}, (1.3.4.2)
0
is the Sobolev space H} (€)) with norm
/ s
: ot H(R)
lgdady,y = el = [ lgradvl?dx ) —> not g nom

<+ superscript “1”, because first derivatives occur in norm

o Notaon: H(% (O)
by Ast P-F. mapaldy

+ subscript “0”, because zero on 9()

Definition 1.3.4.8. Sobolev space

The Sobolev space
H'(Q) := {v: Q + R integrable: / | grad v(x)|? dx < oo}
0
is @ normed function space with norm

2 2 2
1215 () ==llello B2l ) -

R423.50D)

For what values of «a, 8,y € R does the quadratic functional

J:R> R , ](x)::xT{g 2]x—7x1+a,

- - . - L____(—_/
0SSess a unigue minimizer.
P a dalx x)

> a&,y) 2 X7 Zﬁ]%

Theorem 1.2.3.44. Existence of unique minimizer in finite dimensions

Let J(u) = %a(u, u) — £(u) + c with symmetric positive definite (— Def. 1.2.3.27) bilinear form
a:VyxVy— R (— Def 0.3.1.4), linear form ¢ : Vj — R, ¢ € IR, be a quadratic functional on the

vector space V.
If Vo has finite dimension, then the quadratic minimization problem (— Def. 1.2.3.11)

Uy = argmin J(u)
ueVp

always possesses a unique solution.
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Which of the following functions belong to the spaces L?(] — 1, 1[) and H'(] {\/—vl\/[ respectively?
1. A(x) = [x],

2. fo(x) =log x|, =" £, (6) =5 " =
3. f3(x) = sgn(x),
4. fa(x) = /|x| +x.
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Theorem 1.3.4.23 and example 1.3.4.24
by Basil Ruch - Friday, 26 February 2021, 3:17 PM

u/,{/(‘

[

1/2
u € Hyf]0, 1

Theorem 1.3.4.23. Compatibility conditions
for piecewise smooth functions in H'(Q)

Let () be partitioned into sub-domains () and
(). A function u th;{ is continuously differen-
tiable in the closures’of both sub-domains, be-

longs to H'(Q)), if and only if u is continuous
on Q).

ue Q) ad wme Q)

' beawwe |

—
doer r%m%&mmme

mlejrwﬁ oven it

| don't quite understand why functions in H*1 have to be continuous. What is preventing me from integrating
the gradient on each subdomain?
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when PARAT % no

Faveo Horold to Everyone

Isn't this just a case of the user choosing the correct merge directive for the pull request?

hint: Pulling without specifying how to reconcile divergent branches is

hint: discouraged. You can squelch this message by running one of the following
hint: commands sometime before your next pull:

hint:

hint: git config pull.rebase false # merge (the default strategy)

hint: git config pull.rebase true # rebase

hint: git config pull.ff only # fast-forward only

hint:

hint: You can replace "git config" with "git config --global" to set a default
hint: preference for all repositories. You can also pass --rebase, --no-rebase,
hint: or --ff-only on the command line to override the configured default per
hint: invocation.

or perhaps something along these lines? (Not a git expert, just shooting ideas...)

¢
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Theorem 1.3.4.23 and example 1.3.4.24
by Basil Ruch - Friday, 26 February 2021, 3:17 PM
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What is a suitable configuration space for an elastic balloon filled with pressurized gas?

Q1.2.1.30.B Balloon shapes not covered by a spherical displacement function
by Faveo Hérold - Wednesday, 24 February 2021, 5:10 PM

Regarding review question 1.2.1.30.B:

It seems to me like a few cases would lead to balloon shapes that cannot be described by the suggested
displacement function on a sphere. Consider the following discontinuous forces on a balloon:

FR) X
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by some v c{aMt — /Q+ comhnwed S

, Configuration Spaces
) by Gioele Molinari - Monday, 1 March 2021, 9:20 AM

Hello,
I have some questions about configuration spaces.

57 « |s a configuration space always a function space? If not, could you provide an example of such a
space? (In the videos are presented only function spaces (string & membrane).)
@ « |If we have a function space (as configuration space) must this always be affine?

// {//////
@ b

<& (- 77
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R = u =0 7




@ A flexible thin beam is mounted on a wall perpendic-
ularly. What is a suitable configuration space for it, if
the lateral extension (thickness) of the beam can be
ignored?

. g/a/?/y Aescrphon

_ , X
1.2.1.30 A) (review question)
by Michael Vollenweider - Monday, 1 March 2021, 11:43 AM

beam

Regarding review question 1.2.1.30 A):

If we were to use Euclidean coordinates, then depending on how strongly the rod is bent, the interval on
the x-axis in which we would need to define our displacement function is not fixed. Is it enough to allow
continuously differentiable piecewise functions? Or do we need to use a different coordinate system where
we use angles and the length of the rod as our interval?
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Review Q1.5.3.17.D
by Simon Bolt - Saturday, 6 March 2021, 6:25 PM

= Coof /5//

In this Review Question | ended up with the ODE

L+x)Hu"+(2x+x)Hu=0

when looking at the particular case of v(0) = v(1) = 0 such that boundary terms vanish.

Then, | also expected to recover some Neumann Boundary Conditions by plugging in the ODE, similar to
the 2d case of example 1.5.3.11, but | got stuck at

v(0) + u'(0) v(0) -2 (1) v(1) =0 ¥V v € H'(j0,1])

(the leftover boundary terms from integration by parts)

Could you elaborate on how to recover the Neumann BC in this case?

State the 2-point boundary value problem satisfied by the solution of the variational equation

LVP: du do

(1+x )dx(r)(a(x) —o(x)) =0(0) Voe H'(0,1]) .
i)

v(0) « mhocty om
LHW [-3 ]

Goal LVP == BVP  mut wowme « EC
SﬂepIi W with e CT(I01T ) +ibp

f(%x u'v - n'v dx %:

> g - &0 = [0 d X O Nvel”

u e H'(J0,1]): /O

w5 fonckionad L£()- e
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Lemma 1.5.1.13. fundamental lemma of the calculus of variations

Let f € Cpy([a,b]), —0 < a < b < oo, satisfy

[ $@o(@1dz =0 o € C(a,b]), @) = o) =0.
Then f = 0.
(e ) = A §

> |-l “PE" ()

/b F'(x)dx = F(b) — F(a), (1.5.1.6)
F(x) = f(x)-8(x) = F(x)=f(x)g(x)+ f(x)g'(x): (15.1.7)
b
. / f(x)g(x) + f(x)g (x) dx = f(b)g(b) — f(a)g(a) ,
b b
[ £@0(@) &2 == £ ©@0(2) % (fb)o) = flao(@) | ¥f,0 € Chu(la,b]). (1518

boundary terms

5@]1‘- ek wth ve C=01T) & we (1)

f(%x u'v - v dx =

WM/M— Zn‘lvll] - u'(0)vlo)

= vl0)

2/6)
(7)

Du'lllwll) = u'(0)00) =

-

pUL =

>
w'll) =0 )
u'(0) = -] B

(1] & (2)

b.c

Exercise (1-7.c & 1-7.d) B (/P 1%]/ 7/60%/ 96 WS

" by Gioele Molinari - Saturday, 6 March 2021, 11:14 AM

In both proofs of subtask 1-7.c and 1-7.d is used Cauchy Schwarz inequality.
In ¢) is applied component-wise and in d) is applied directly.

Why this happens? In other words: When we have to use the component-wise application and when we
could directly apply CSI?
> R

Enogy nom Gy U -Qc/R?

lull, = f MUU(X)/ r ul)) o x

- /aavw// YR //ﬂ//L<
zz/zn)/x /

Nx ) - o ()] alx

ho lfls = NEI Nl

1-1=7-1,
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A) Lly) = f

Thgk -

&W/) 7%60/‘6@’)

[ 2)| = | [1d ) ds |
AR NAR z |1 //L' N Z{/ée 4//_7//3 //U//

Exercise (1-5.d)
by Michael Vollenweider - Saturday, 6 March 2021, 10:30 AM

In exercise (1-5.d) it states "Obviously, the right-hand-side functional of (1.5.1) does not meet these
smoothness requirements in the whole interval ]0,1[, only on parts of it."

How exactly is that obvious?

Confex? - LVP = BVP | 2p- BUP
J[/{ea{ ! Smw%né&s MC[L(M/CWTV[f
6 'y ol

4

{

f@p(x)v(x) 0/>(

Assumption 1.5.1.2. Smoothness required for two-point boundary value problems

The following smoothness requirements have to be satisfied

ue C*([ab]) , oceCl(lab)), feCab]). (15.1.3)

;

jur?){O/X =

V)

N ol ) vetll600) ()
2

HW 1-3 > comhpoonn o Hi(1o.00)

e Col01T) -« olh)= [l
(o(le)] £ Rl vi):
N

= 7
ot &&S(bé( becattod )a//(w/ el (S

not («Mfmww (7

Bof = thae is o

C S
£ thye wns orne =

Q13519 E

Give an example for a linear variational problem on H}(]0,1[) with continuous and s.p.d. bilinear form
and continuous right-hand side linear form whose solution will not be the solution of a two-point boundary
value problem in the sense of classical calculus.

Hint. “in the sense of classical calculus” implies that the solution © should at least be continuously differ-
entiable: u € C([0,1]).

Tuwe cants -

See (¥
(i) Discon hinmow) m(/xmmf 0-

[ ' o = (ol ds Voot
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We consider the variational problem

_

HW 77

u:Q— R~ / divu(x)divv(x) +u(x) - v(x)dx = /v(x)
Jo
0

= x)-n(x)dx Vv:Q — R?.

E)'

What is a suitable Sobolev space and what boundary value problem is satisfied by the vector field u?

L s wom - 2l = Vdivy o+ 12 s

o~

= {yv - R—= R oy <= 7

BVP -

Skep T - %wf with v e CI(52),

= 0
Lbop. (Green's 6/}7%4&) Flae

Theorem 1.5.2.7. Green’s first formula

For all vector fields j € (Cp,(Q2))? and functions v € C},,(Q) holds

j-gradvdx = — [ divjodr+ [ j-nods.
'/Q] grad vdx Ja V)]0 x+.aQ] no

(15.2.8)
f divy vy + uv Ax
f( g diva va1 ) yax = 0
= PDE - ~@W%MV%7‘£{ =0 w52 ()

ST, Tob with welC"@NE we (1)

] dvy vy + AV Ax

f(@W v Ax ~ fz%gv/&(x /7,7/5
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Voe Cr5 )
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%2

[> bc. Ny v+ = O on 4
[ MUVl [g, €CAIR) v ueC(3),
by Stosthness mmﬂzéﬂs I

What is the rationale behind the two conclusions in the red boxes (see image)? The requirements for
lemma 1.5.3.4 are quite strict and almost never satisfied for the "boundary integral" (being zero on the

boundary of the boundary like in example 1.5.3.11)? The first one is an example from the tutorial class and
the second is a homework exercise (1-7.f). Thanks for the clarification!

@) WP-10-OP-carpe  fir ue H'(<)

S T S Ue IXI) Yo -9y dx = O
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Which boundary value problem does th%wizer of the functional

ou dul

2
e U 4 1
() =5 (6)| + |u() P <G dx, o € B0,

W) = Yalu.u) zm)

Wumm Y44

Hov) = / Agm/p(% 3@/7)& F u()olt) d X
yaey

|
A = L—/ | j
L(v) = [ Id o) dx

2
/q,)i ZS = a(/)(( - (ﬂfzfag( >/(r)(e - &{J)Xde K

gPDE - ~div Aqud it = Xl 2
WP

| Jw = [
Q

solve? Here, Q) — IR? is a bounded domain.
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Follow-up question to the Q&A of 1 march
by Basil Ruch - Monday, 15 March 2021, 8:05 AM

What is the reasoning behind this (red question mark) estimate? (page 3 of the pdf file)

2alklz = < l=z). (UFp)
> Nal = [ geduk) k) geduk) dx
y H‘{,Q) /OPD) R \\ Grod )“
L (S = f /f@/ﬁ&/ﬁ(x)// &/X
/,(//2: \\U\\H () hu \\Lz ) “ gred(0)

Theorem 1.3.4.17. First Poincaré-Friedrichs inequality

IfQ c RY, d € N, is bounded, then

+

| guad e

/ﬁ(m

=

——A—
ull, < diam(Q) || grad u||, (¥ € HI(OQ)N

\/0/

=/ //\éffa&/ 7/
= Zm(w”,/?f /M//
R ™

= C

Hi( 2>

P

()
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C? 0?33 /g& l We consider the bilinear form

The use of the composite trapezoidal quadrature rule on a mesh M of |a,b[ with nodes

o 1 1
a=xp<x1<---<xpm_1< xp := bamounts to the approximation b(u,v) := /0 u(x) ;_z;(x)dx , UE LZ(]O,l[) , VE Hl(]O,l[) .
b M-1
(TPR> / ¢(x) dx ~ 21114, xo) + Z P(x;)% /,] +hi1) + 7/1M<P(XM) We study its Galerkin discretization based on the trial/test space S?,O(M) on an equidistant mesh of |0, 1]
Ja j= with M cells, using the standard tent function basis. Compute the resulting Galerkin matrix.

Explain the difficulty encountered when applying this quadrature rule for the computation of entries of the

Galerkin matrix for the linear variational problem (
b Ab; V) Jif [i— | > 2 M
du _
u € Hy(]a, b|): /0( v) () /f Y)dx Yo e Hi(a,b[), fb (x GO ax= . " (,
a :%‘2%/
- - 0 : : : —7—1/}/ ifj=1i+1 — T
discretized based on 57 (M) and its tent function basis. b i b
d—:(l) d_x{z(x)dl = < 0
(TPR) repeudien Plig) well- defihed p

} k=i I

oo e SOM) = Ao o comsbunt v b M A T L] ;
=> % doxcrtincoun ok neddy X, /
= 24 % (x,) ot well-debined

P Lifl<i=j<M-1 - ']

- =0 G

= 0 m dicgomad o Galirhin maki

%|— ==

-

Ke v loal  fapezodal role ! N/ 0] E. b
mw{% ( ot - sided &tm@& de[ﬂwé;&am all ) % < . 7 )
4 //0 Tk——-—-—w*l
h
7
0 /, 0 an |
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Explain the mathematics underlying the following code.

C++ code 2.4.5.11: Computation of gradients of barycentric coordinate functions on a trian-
gle = GITLAB

Eigen :: Matrix<double, 2, 3> gradbarycoordinates(const TriGeo_t& vertices) {
Eigen:: Matrix<double, 3, 3> X;
// Argument mpertices passes the vertex positions of thg triangle
// as the -%%s of a 2X3\—matrix, , see

// Code 2.4.1.3. ction returns the components ¢f the

0w O N OO 0 s W N

// gradients as the/columns of a 2X3-matrix

// Computation sed on (2.45.10), solving for the
10 // coefficientd of thesbarjecentsiepecoondinate functions.
1 X.block<3, 1> Eigen ::Vecigr3d ::Ones () ; \V

12 X.block<3, 2>{0, 1) = vertices.iranspose();
13 return X.inverse ().block<2, 3>(1, 0);

Ls solwe LS

?(3

al al al
dr al a3

jeiIZ

Ailx) = o, * BoX (el livear)

v
LSE=

Nole.: gm{ﬂ;(&) = ,ﬁb

1 a% a N] Ky A3 1 0 0
1 a3 a3| B} B2 B3| =1(0 10 (2.4.5.10)
1 a3 a3] B B5 B> 001

e R™ | 9 =din S{ ()
J

Compute the Galerkin matrix for the bilinear form

a(u,v) = /Q grad u - gradvdx,

u,v € H'(Q), Q =|—1,1[% and the trial/test space
SY(M), M shown in Fig. 85, using the tent function
bases numbered according to the numbering of the
nodes of the mesh as indicated in Fig. 85.

Ol

@

(_11_1)

Hint. All triangles of the mesh are congruent. You may also use the formula

cot ws + cot wr — cotws — cotwr
Ag = = —cotws cot ws + cot wyq — cot wq , (2.4.5.8)
—cotwa — cotwn cotwy + cot wr

giving thé 87 (M)-element matrix for —A on a triangle with angles w;, i = 1,2, 3.

(A);; by summing entries of two element matrices



, A7 g
| ) -

alix—=17 2) = O
> Row/wolumn soms d{ Gal Mef = O

Z by = | b1 bd findon bos of S'luC)
_ YA
0 = alzb b=z (A),
R;(\’

R L46.15K

The cells of a triangular mesh M are generated by connecting all 17 corners of a regular polygon with di-
ameter 2 with its center. On this mesh we consider the finite element space 810 (M) and the corresponding
Galerkin matrix for the bilinear form

a(u,v) = / gradu-gradvdx u,ve€ H(Q),
JO

where () is the interior of the polygon. We assume that the standard tent function basis of S?(A/l) is
used and that their numbering starts with the central node and then continues counterclockwise through

the corners of the polygon. _
dim SClum) = a«(

Hint. The formula (2.4.5.8) can be used.

cot wsz + cotwr — cotws — cotwy
= —cotws cotws + cotwi — cotwi (2.4.5.8)
— cotwr — cotwn cotwy + cot wq
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Appealing to the following estimate
Theorem 1.9.0.10. Multiplicative trace inequality (% 7T )

3C =C(Q)) > 0 ||”||i2(a(1) < Cllullzq) - Nullgnqy Yo € HY(Q).

prove that for the linear variational problem

u e H'(Q): /gradu-gradvdx+/ uvdS:/ hwdS Voe H'(Q),
e Jea L9 — e"z)
=ﬂ(ﬂ,’l)) L)él"(.(

e(»)
both the bilinear form and the right-hand side linear form are continuous on H'(Q)).

ML ¢ CST ( (M&éyf Schwrz /'We%m(/(& n LUV Tr)

leol
To &'70?/} : ld(l//v>/ = C //%//H’[L) //V—/H/(JL) W/UG/*//(JZ)
€IEN
lalu,v)| f_/ I gadl.,, gy, + ////(/éeﬁ/)//y/%(/?)
2 || gedu //LZ(Q)'//ﬁM{”%’@) @//ﬂ%//ﬂ/é;?} //k/{i)//ﬁ/{fz)
< | gadal o, Ngeeto fyy +Cllatiyy 1ol "
£ maxt), Cf 2 //x/z/élm //”/;/’(Jz)
cst
/
| £(2)] = //h//Le(T’) //U//L?(w - ///7/42(7) : /U/éf’ﬂz) Vo< H12)

R1.9.013E

Another stability issue: How does a perturbation (measured in L?(9Q))-norm) 6h € L?(9Q)) of the Neu-
mann data i € L?(9Q)) in the linear variational problem

grad u - grad vdx = /vadx+/cmlzvd5 vo & HL(Q)) (—%)

u € Hi(Q): / a(x)
JO
impact the enirgy norm of thEolution of that variational problem?k /}
, > uhifoem (e deling we L = 1
wmishn(ar mea %( P ! =

7N

-

Ho(R2) = { ved'(Q) - [ odx

Theorem 1.8.0.20. Second Poincaré-Friedrichs inequality

IfQ C le, d € IN, is bounded and connected, then
|ully < C diam(Q)|grad ul|, Yu € H:(Q).

3C = C(Q) > 0:
= (#) o onigue sslulion s lalye = C Ml grad i)z
Pe boecloafion nh ———> hedh
a > S
By Uneas :
r wem& fg/&do%-j/c’dyf/x = fcﬁ-?) AS
- 8% = 2 ‘?Q
”e' H</§ ?/((2 )DC//JM/ﬁ < | ged Suc || = Sull) = [8h1)s,,, Ve,
/M%I C//o%//ﬁ”l%/&)
> Cldull,, £ C Idh.,.,
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For a bounded polygon Q) C IR?, we consider the linear variational problem

ue HY(Q): /Qe“x” grad u(x) - grad v(x) dx = /ao xllv\(x) dx, Yoe HY(Q). (1.9.0.14)
‘ Zh

State the boundary value problem satisfied by sufficiently smooth solutions of Eq. (1.9.0.14). Write down
a domain () for which Eq. (1.9.0.14) has a solution.

- M (&ng ») = O &2

B\/ P : x(
e ged ul) nk) = X X €52
Sech 1.§ -
u e H'(Q): /Qx(x)grad u-gradovdx — /an hovdS = /vadx Yoe H(Q). (1.8.0.12)
Observation: when we test (1.8.08) with v =1 B | — anzdS = /Qfdx (1.8.0.13)
Necessaay  conihon (X dStc) = O
L

¢

sahsled  for W - Symm@/ﬁ: /2 X5 ~ALS
Xe
N

eI,

B




NumPDE@ETHZ




D

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Numerical Methods for
Partial Differential Equations

Prof. R. Hiptmair, SAM, ETH Zurich

Spring Term 2021
(C) Seminar fur Angewandte Mathematik, ETH Zlrich

Q& A Session Much d]

W 2-1d)

LVP = eV, aluv) =L) Yve |/,
1 1
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+ Calorkin discchzation w/ ﬂ/m < Vi, Hiin Yoy <o

My, € L/m’/; " 4[/04./7/&7) :A-/[Vn> ]/U,,,GV@)?[Z)

alu-m,, v, = 0 (7/7)6 Vo,
S Calvbay W#ZDW/ (&0
ﬁssooi&t/ff% AMF

1/u,) }///z =
- %G(/Mh,/m,> ”/(//M17>_Z5(/M,/M) )r///%>

[U"’Vh MU}I .

Flv) = atu) - £ (y)
"Noeded . a iv biliheav £ Ungan N

2 Y
L e Ala) - %otla) )
= Joalu-n)) ot Tulbl
' Bl of Il 204010t
&‘—(-; Loalsu, ju-s1y) V;O( ’ =oney
= %_ ﬁ(/&(" M, MMV;) = % II/(/(”/MMI/a
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For a triangular mesh M with §V(M) vertices, §€( M}, edges, and §M cells give sharp upper bounds S -
- for the number of non-zero entries of the Galerkin matrix arising from the finite element discretization of - d{ﬂfﬂ’”{ g(*;hg;
o@ o —> o o—> » e > @
ue H (Q): /Q a(x)gradu -gradv + c(x)uvdx ‘/vadx Yve H (Q), (21.2.2) ,@ o > &
i _ \
with trial and test space ég( M), p=1,2. \?zh e (Mg;'olenf / ﬁé\
= [ - hng/ﬂ) — Q#E[M) + #7/(\//[) %@ \ \/
/'\ / © $ \
A
J;é/—aét'&gmﬂ/ SN ve o
4 As ‘ ' .
(/_ &ZTT& e mcgom/e?nef
\/

{ Nodes x;, x; € V(M)

i 1)) — -
not connected by an edge & Vol(supp(b),) Nsupp(by,)) = 0} = (A);j=0.

P:(Z: VA 5;/\/4}

b

We rely on a set \V of interpolation nodes

N 1= V(M) U {midpoints of edges} ,
N =A{py..., pn} (ordered) .

7 o
Locakons o GSF By St ll)



Simon Bolt to Everyone 05:16 PM

In the context of FEM, we have only seen identical trial/
test spaces so far. So when might different trial/test
spaces be useful?

g - Rk f@%‘
- foely deed e Gty
mwtwl% Bor pen - /vmmé%fc p/aélcm;

KRR 46213 F

Express the local shape functions for linear Lagrangian finite elements on a triangle as linear combinations

of the quadratic local shape functions as given in
bl = (2A1 — 1)Aq,
b:?( = (2/\3 - 1)/\3 ’
by = 4A2A3,

b%( = (2/\2 _ 1)/\2 7
by = 4M A, ,
b = 4A1A3 .

Lotel o= 3/ (k) = BIR) < &R = £70K)
I
Spon 19,04, Spar § 4, b

(2.6.1.6)

b = 4173
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Characterize the space of gradients of PP(
vectorfields.

: ﬁm% E(//?Q)
£lx)

@/zd Flx) =

|

04[7‘(?,411)

&
&Jpp&nﬂé(fz é '

ﬂrmf J )

qrood A, (R ) =R R)@2(R)) < (5(R) @

Plx) = 2 X

L= 0 ({rI:_

e

|~

Il

v

R?) and Q,(R

> oL, XD e

g€
DX' —
[£]

(R)~ £, (R”)

t[7[s JP, (IR ~

Loy X X,
N ~
5
a(a/{ ?(x\ = L”%T

3_4-

2) as spaces of componentwise polynomial

% (R°)

B

(R") ~
(R)

o;c:fgz,o D(‘SLW XJ €&
o s L2,
T S AT L0 R

.Z)

_ P9

37( X,

5.(®]
I~

Bi, X X e B R®L(R)

XJ,} X;éXz} S p(?”?) W\/Q,(//Q)

R L2623 H

We consider the bilinear form

b(u,v) :=

AN

a0 26213 7

We perform the Galerkin discretization of

a(u,v) :=

(1+ ||x||) u(x)v(x) dS, (2.6.2.14)

where d() is the boundary of the domain sketched in Figk

/]

Writing M for the mesh drawn in Fig. 121, what s the
maximal number of nonzero entries of the Galerkin
matrix arising from the finite element Galerkin dis-
cretization of b(-, -) using S} (M) equipped with the
standard nodal basis as trial and test space?

> ({26.213.C

u(x)ov(x) ds,

where d() is the boundary of the domain from Fig. 121, by means of the finite element space S?(M)
equipped with the standard nodal basis. Here M is the hybrid mesh sketched in Fig. 121.
Compute the element matrices for the two cells of the mesh of Fig. 121 whose vertices are the nodes with

the following numbers:
(i) nodes 9, 1, 7, 8 (quadrilateral),
(ii) nodes 3, 11, 4 (triangle)

¢ 0

Any local numbering of the nodes can be used.
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Lemma 2.7.5.5. Integration of powers of barycentric coordinate functions

For any non-degenerate d-simplex K with barycentric coordinate functions A4, . . ., A1 and expo-
nentsajelN,jzl ..... d+1,

aqlog! -« oy q!
(1 +az+- - +agy +d)!

/ AM L A% dy = dI|K]| Va € Né+1, (2.7.5.6)
JK

1 NMa+1

> ey w/ “Z ?[(2/7 /ea?@f)
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Let b}, ..., b be the local shape functions for the finite element space S{ (M) and a rectangle K witt
vertices

0 0.5 0.5 ) 0
1 2 _ 3 4
= [0] . lO] . lO-S]' 3 l0-5]'
What is the value of

| (k@) (3®) dx, peNo?
SR/ | 2
local shape tunchons € (X (R /

T pe (x) = (1=2x)(1-2x,)
| 2| by (x) = 4xx,
0 Y - K 5

{ b‘(x "ol ) dx = f/(wx,f?m?xf@o ) dyolx,

fM 0%, ) o, - /M 2 ) A = IO
© o Adens Sepatahion o ditections

_&/M—Qt)’:(%)%{f = (- e = T

of. Poof of Lemma 2755 = Blpt/,qr/)

Ly Sl Bebe Fondin
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E bilag) = 8., ,kAL=1_49
> ol cadinel baiy preperly

HW 2-9) A)

In the file 1 fppdofhandling.cc complete the C++ function

std::array<std::size_t ,3> countEntityDofs (const
1f::assemble: :DofHandler &dofhandler);

that returns the number of global shape functions (managed by the local—global index mapping encoded
in dofhandler) associated with mesh entities of co-dimension 0, 1, and 2 respectively (the co-dimension
also serves as index for Te returned array).

In LF++ © ne by CM}% N Intetsy Do{s()

C++11 code 2.9.2: Sub-problem (2-9.d): Implementation of countEntityDofs () = GITHUB

2
3
4
5

std :: array<std :: size_t, 3>
countEntityDofs (const If ::assemble :: DofHandler &dofhandler) ({

// Idea: 1iterate over entities in the mesh and get interior number of
dofs for
// each

std ::array<std ::size_t, 3> entityDofs;

std :: shared_ptr<const If ::mesh::Mesh> mesh = dofhandler.Mesh() ;
for (std::size_t codim = 0; codim <= 2; ++codim) {

entityDofs [codim] = O;

for (const auto xel : mesh—Entities (codim)) {

if (el—>RefEl() == If::base::RefEl::kQuad()) {
throw "Only triangular meshes are allowed!"; <) /]/07L ”edg&{
}

entityDofs [codim] += dofhandler.NuminteriorDofs (xel) ;
}
}

return entityDofs;

HW 2-9 £ )
K h/mglz w/ bwyoonbic cooelenare fonchons, A =13
LA dx = 2

I. By afline tmawfomabon - [= $27512 (

4>|<f |£:’hr—> K | 3(;’* Q%j’ﬂa

o [ Lemmz 2814, £2.6.15 ]
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For any non-degenerate d-simplex K with barycentric coordinate functions A4, .. ., A1 and expo-

: I
2al oo o Kd+1 — : d+1
/K A5 N do = dIK| R e NG (2.7.5.6)
Apply. A2, o« =7, £, >0 kv K¢

f;( ?a (K70{l -
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Big Picture
by Nico Graf - Monday, 12 April 2021, 12:38 AM

In the last Q&A you gave us the hint to focus on the big picture when studying for the midterms and in general reviewing the course material.
So it would be interesting to hear what you regard as the most valuable connections between the topics we look at so far.

As far as | currently understand the material | would summarize like this:

First Problem Definition:
- We get a minimization problem (i.e. an operator on a function that we want to minimize)
- Then transform it into a Linear Variational Problem
->We can check if there are solutions by checking the necessary conditions (e.g. continuity of the Linear and bilinear form)
-> for this we can use theorems like Cauchy Schwarz, Mulitplicative Trace inequality or Poncre Friedierichs Theorems

Second Modelling
- Once we have checked the existance of a solution we can use Finite Element methods to find a good approximation of the solution
-> The essence here is that we are given a mesh and a degree of Freedom which then gives us the framework for which basis functions we can use,
-> in particular the number of d.o.f 's per cell and the shape of the cell will dictate what basis functions and what degree we use.
-> given the basis functions we can then build the galerkin matrix and the righthandside Vector
-> then we just need to solve the given system for the coefficients correspoinding to the choosen basis

Third Refinement and Assessment
- When we compute a solution we then want to know how large the error is since with FEM we are only able to compute an approximation.
->We are interested in how fast the error converges and find this out by studying the erors for different mesh refinements or increase of d.o.f
-> typical categories are algebraic convergence and exponetial convergence
-> for algebraic convergence we can then as well determine the rate of the convergence
-> In order to estimate the error and the convergence we have theorems like (3.3.5.6 Best apporximation error estimates ...)
-> Those esimated tell us that the convergence heavily depends on the "degree* of the Sobolev space in which the function is.

| was wondering if I'm missing some important Keyword in my very short summary or if you have some additional remarks ?
Thanks in advance.
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First Problem Definition:
- We get a minimization problem (i.e. an operator on a function that we want to minimize)
- Then transform it into a Linear Variational Problem
->We can check if there are solutions by checking the necessary conditions (e.g. continuity of the Linear and bilinear form)
-> for this we can use theorems like Cauchy Schwarz, Mulitplicative Trace inequality or Poncre Friedierichs Theorems

@W%f;cb er/% Wzahon s

Fl) = /Q/U’U

ryp "

~ ¢ (v] = min

S

Zz/m% om (IO cm/zb}wo[& wit. |,

* Set fnchion  spacen Sobdley  space

Lnol - eé&/b/’fc L) ———— FUF
T (5 + b. )
Tl - T p b 7‘4 nafred £ &9&@/76%/

*admicsitle dal
Z(//Lg Ao we need BUP . — 7’@ cmgf JJ{M@&/UK/SMOWZS
— fo vnders

NS S
- fov R hates |

Chﬂ/ﬂ?k 2 Diccelizabor

- Once we have checked the existance of a solution we can use Finite Element methods'to find a(qood)approximation of the solution
-> The essence here is that we are given a mesh and a degree of Freedom which then gives us the framework for which basis functions we can use,
-> in particular the number of d.o.f 's per cell and the shape of the cell will dictate what basis functions and what degree we use.

-> given the basis functions we can then build the galerkin matrix and the righthandside Vector
-> then we just need to solve the given system for the coefficients correspoinding to the choosen basis
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Third Refinement and Assessment A ﬁ(ﬁ\f’;n é‘/
- When we compute a solution we then want to know how large &€ error is since with FEM we are only able to compute an approximation.
->We are interested in how fast the error converges and find this out by studying the erors for different mesh refinements or increase of d.o.f
-> typical categories are algebraic convergence and exponetial convergence
-> for algebraic convergence we can then as well determine the rate of the convergence
-> In order to estimate the error and the convergence we have theorems like (3.3.5.6 Best apporximation error estimates ...)
-> Those esimated tell us that the convergence heavily depends on the "degree* of the Sobolev space in which the function-is:
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AU we  can ?é/l‘ : mgm/p/éﬁc Cﬁdq,%
: 7@6{@51 W%W%ﬁ'& #/ (lodin i {/

Paolo Bottoni to Everyone 04:56 PM

| have a question regarding chapter 1 | couldn't find it earlier but now | did: in remark
1.5.3.10 we have a diagram which tells us that we can only go from LVP to BVP and
not the other way. am | reading this diagram wrong?

#+  BUP

N
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v RQ 3353 D ' HW 2-8 1)

If M’ has been created by regular refinement of a triangular mesh M, how are shape-regularity measures %&ggm é% r. b <. 7}(&72]/ %\/ 7 —> f 'P &) 0/5 ) Cé(

P and p e related? =52

7%
and 57O ]

For a simplex K € R? we define its shape regularity measure as the ratio —}— L p(ﬁ’// ég/gg - Wé%?/?// Wﬂ%ﬁ%z{) {Uéé %y (% ff
<
ok == h% :|K|, hg:= diam(K), > Py {K/ =
f;c { L) Ax e £ (s, )

and the shape regularity measure of a simplicial mesh M = {K} as
pat == max py . e;/f( W'a@ﬂ?é
/Re%m H/}th[méf?f &‘/ A 72?724/7?(( Kk /ﬂ?&ng& C LSE ane b(mycw/;fc oo . Qichons
—>
(%) = [ #AE « 5 ) (Pln) i)
3

) <)
= 7’ (ﬂb) - 0
) -/

v,

Regular refinement of triangle K into four congruent triangles T1, T, T3, T}

— , | 2 7, (l
< amd |, are Sndlav (e m?%?) o o

becowmt. N7 e here A = Z




= Whee (s the  eooy

Pseudocode 2.7.4.21: Generic assembly algorithm for finite element right hand side vectors

i | Vector < assembleRhsVector (Mesh M) {

2 phi = Vector(N); // Allocate zero vector of appropriate length

3 foreach Ke M { // loop over all cells

4 // Obtain number Q(K) of local shape functions, see Def. 2.7.4.5
5 Qk = no_loc_shape_functions(K) ;

6

// Local operation: compute element vector, length Qk —
Def. 2.7.4.5,

7 // (usually incurs cost of only “O(1)”)

8 phi_k = getElementVector(K) ;

9 // Get vector of global indices (length Q(K));

10 // Usage of locglobmap as in Ex. 2.7.4.10

T Vector idx = {locglobmap(K,1)),...,locglobmap (K,Qk) };

12 // Add local contributions to global right-hand-side vector
13 for i:=1 to Qk {

14 phi(idx( )(- phi(idx(i)) + phi_k(i);

15 }
o

17 return (phi); /y
il ety

olement vecky
N i . N i \l

((—rb)] - l—ngl(b{I |K,) . l—l(sz)i(l,j)
[L+ I | ?

) = /SF Fhe
& {037 /m@ 0{4 e #?M‘ sk

(2.4.6.6)

peviled (7y %/H;WM
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Appealing to Ex. 1.2.3.45 explain why for a bounded polygonal domain Q0 € R? and |; : C°(Q)) —
S?(A/I) denoting the nodal interpolation operator according to Def. 3.3.2.1 the interpolation error esti-
mate

[ =l 2y < Challullgpq) Vu € H'(Q),

with C > 0 depgnding only on the shape regularity measure p 4 of a triangular mesh M cannot be true.

\/
Thoe ane Bonckons w6 #(R) w/  wlxr) = oo
Commtder o meoh N with a e (0 X*

=> I(/O{(,)ix) = oo
"
M~ p.w. Lnewy

= | o ()1, 0o

L(Q
= Ju-Tttlls, = DT uls - lal
L—’Té = 00 L/Z/;:

%
;@%& %M( e[oz(mm/ @ﬁafm Cﬁf (i L /
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ueVp: /QK(X) grad u(x) - grad v(x)dx = /1“ v(x)dS, Yvel, (1.6.1)

Vo 1= {v - HI(Q) : U|r0 =0, v|1~_l = const} . (1.6.2)
Quotion Zmp&z/ naluel bo. <

Muin ool I.bop.

Theorem 1.5.2.7. Green’s first formula

For all vector fields j € (Ch(Q))* and functions v € C},, (Q) holds

/j-gradvdx=—/divjvdx+/ j-novdS. (1.5.2.8)
9} o) a0

Sep T Tl with @ = C7(2) & ibp
fw/l'v(u(zc)g/a%/(/d-ﬁ dAx = 0
= PDE - - o< g ) = O w



@ Step I = Toot wehh ve \, & cbp

jMu dx + fzc/x@zz/éf % z[f AS /U AS
=0y I T

0/770 = 0
= f xgede -v dS = f@ AS
T) 'T'( /\
f | (~ sef = | >

ve V, = & covshnt
EN f % (<) gied o -n AS = [T
A won- (aw( el - fleor - bowmcliny - emddlion
~cont A g Uy = O
Yoo = gada (L5 ]

- Related -

- X,

/(/016'. /V((Tw

{

A lx) =

5.3

P

Existence and Uniqueness of solutions for QMP
by Michael Vollenweider - Sunday, 18 April 2021, 10:58 AM

| got confused regarding the criteria for existence and uniqueness of quadratic minimization problems.
Why does the unigueness condition (Theorem 1.2.3.31) not imply the existence (Corollary 1.2.3.26)?
Could please give a structured overview?

Theorem 1.2.3.31. Uniqueness of solutions of quadratic minimization problems

If the bilinear forma : Vi X Vi — IR is positive definite (— Def. 1.2.3.27), then any solution of

u, = argmin J(u) , J(u):=ta(u,u) —€(u) +c,
¥ ueVp — _/
is unique for any linear form ( : Vy — IR. /{/l /)

ZU/@% o gullence z
~>§ J.1] Vv, = & 4/4//7)

Hol = 20z

V
?)
—= o /74/77/[77/5?/“ . @

((}f) Ex 7.3.0 |

We consider the quadratic functional

/{u ) —1) —1}dx,
9((0( j)

1
J(u) ::/0 su?(x) — u(x)
> Mo mimizer )
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aluv) = Lﬁlﬁﬂ'\?/ﬁ/ﬁﬂ()( + é}ay A S 40et ()

L> \S.pﬁ(. == cnegy oo 11,
1o v A (v) 7{%?2)&/)(, Fe L75) is bonded
Az

20 F .k

(#] = JC=0: [(1G)] 2 C ol VocH(2)
- C8T ) £ )Rl Mol Voel (D)
lwl, = Clol, = (¥)
Tool. - L> by wmbfn(r%l all edimale) .
Theorem 1.8.0.20. Second Poincaré-Friedrichs inequality
IfQ c R d € N, is bounded and connected, then
AC=C(Q) >0: |u|,<C diam(Q)|/gradul[, Vu < H{(Q). gy
H;(Q? = foel(o) [ wltOdlr =0 7
2
Trde « it » = U, + D, (D)
. . 7 = cong
(v, D). =0 == Mol =lol #1513

Thin.
(ol = Clgevf. = N2,
(Mble:  qwdo = j/a;/zﬁ“ )

Lo vl, = //(7%/7)/4: £ //v/ée;ﬁ) {

@éﬁ/&"/% with U = cond /

Izl = y& 150, =_clzl,

\_/ /7(@&(/}7\) here |

Teol,

Theorem 1.9.0.10. Multiplicative trace inequality

3C =C(Q) > 0 H”Hiszz) < Cllullziqy - Nullgrqy Vu € H'(Q) .

[ 7)*//;

—_—

—_—

//W?/” //; a //U%/é;(z&ﬂ@)
lged vl + Cllor], -l o* 0,
Cligedvils = C vl

foll, + 7], S/é Cllvll,

Py%%qépﬂg

/] Wéqﬂ.
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The local 2D trapezoidal rule on a triangular mesh M of a domain () C R?
3 n
/ p(x)dx~ Y 3K| Y @lak) a the verticesof K ,
0 KeM (=1

is used to approximate the right-hand-side functional /(v fQ x)dx, f € CY(Q)), for a second-
order elliptic boundary value problem, that is we use the perturbed functlonal

(o) := Y. wpf(po(p), wpeR, (3.5.2.3)
pPEN (M) I\ (
where N (M) is the set of nodes of M. = K%P—éE /5 } < 2

e What are the weights w,,?
e Is the functional #;, from (3.5.2.3) bounded on H'(())?
e |s the functional /;, from (3.5.2.3) continuous on SO(M)?

>j[v) 270&/0)

mm‘

= \/Eg bearins

v /M '
s o 2y 24
(00/7(61{)(5/07

o) = leg /Z% )]

r’l/ ¢V

M(f% o

RQ 35228

We approximate the right-hand-side functional £(v) := [, f(x) v(x)dx, f € C*(Q), for a linear varia-
tional problem on H}(Q) by
04(v) = /Q (,f)(x) o(x)dx, ©e HYQ), (35.2.4)

where |, : CO(Q)) — SO(M), p € IN, is the standard nodal interpolation operator, M a triangular mesh.

e Is /;, from (3.5.2.4) bounded on H}(Q)? =q . =
. Pre}dict the asymptoticudependencg of the quantities > YES ’ Z” [’?))} T HI 7(\//[_? ( / v 45
O(M):= sup 1€ =€) (v)] CSI R._;\/C
veHY(Q) o1l .

on the meshwidth /,( on sequences of meshes obtained by uniform regular refinement.
One of the following results can help you answer the second question:
Theorem 3.3.5. stimates for Lagrangian finite elements

LetQ) c RY d = 1,2,3, be a bounded polygonal/polyhedral domain equipped with a mesh M
consisting of simplices or parallelepipeds. Then, for each k € IN, there is a constant C > 0
depending only on k and the shape regularity measure p r, such that

min{p+1,k}—1

lull gy Yu € HY(Q). (3.3.5.7)

haq
Uu—7ov <C
v,,eS,,(M | il ) ( p )

Theorem 3.5.2.5. H'( Q)-Nor-stimates for Lagrangian finite elements

LetQ) c R d = 1,2,3, be a bounded polygonal/polyhedral domain equipped with a mesh M
consisting of simplices or parallelepipeds. Then, foreachk € IN, k > 2, p € IN there is a constant
C > 0 depending only on k, the polynomial degree p, and the shape regularity measure p 5, such
that

< Chmin{p+1,k}71

e =Tyl ) < C o vu e HY(Q),

]l g

where |, : C°(Q) — S)(M) is a nodal interpolation operator.

Theorem 3.5.2.6. LZ(Q)-Nor_r Lagrangian finite elements

LetQ c RY d = 1,2,3, be a bounded polygonal/polyhedral domain equipped with a mesh M
consisting of simplices or parallelepipeds. Then, foreachk € IN, k > 2, p € IN there is a constant
C > 0 depending only on k, the polynomial degree p, and the shape regularity measure p r4 such
that

l|u— Ipu||L2(Q) < Chjf/itn{pﬂ'k}HuHHk(Q) vu € HY(Q),

where |, : C°(Q) — S)(M) is a nodal interpolation operator.
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Let QO C R? be a bounded domain, and a: Q) — R?>2, 7:Q — R, and A :9Q — R continuous,
bounded, and uniformly positive coefficient functions. What is the strong (PDE) for of the boundary value
problem, whose weak form reads

u e H1
du-grado+ dx + / Ve 0 dS(x
t—qonI“D /ykr/gra u-gra v)/(uu x //Kﬁtv
_ /fvdx+ /lwds Yo € HL (Q), (3802)
0 Iy
with f € L?(()) and the Sobolev space
H} (Q) := {v € H'(Q):0 = 0 on FD} , (3.8.0.3)
- Mm% Olték
based on a partition 0Q) = I'p UT'y UTR. \]/

We consider (3.8.0.2) fora =1, ¢y = 1 A =1, and on the unit disk domain () :=
and withI'g :=0dQ). = T =
(i) Is it possible to choose the data ?g\nddfsluch that u(x) = cos(7/2||x||) will be the exact solution of
the variational problem. If not, suggests a modlflcatlo that makes it possible.
(i) Possibly under the modification found in [(i)], determine those functions f and / that will yield that

exact solution 1(x) = cos(7/2||x|). c/ep(,rr,{\g " {/ a,[m
LUP - uel () fgzz/ag/d/m wvdlx * [ updS = ﬂ’z;/)/
o Vo 2 H52)

{(xeR2: |x] <1}

(o) Go vio  PIE fom

- A+ = F in 02



®
C@rﬂp(/@ 1 Tl A v polay  conds

Afx =] = 2025 rlxf
Y(5) = (05(/5)

> Fle) =< L5 (%)Y )
= - /(/(ﬁg(/f)+ L &//7[/r))
i) B.C. qurda-n + /~

—>  wot <«ahdhed by A
/?cmé&igzr In hoduce Mﬁs m be

ke roh.s fem f h(x)ob) ASl) in
vamarongd %ﬂw/d/ﬁm .
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[ Disaussion of mid-lerm exann

(0-1.a) [J (4 pts.) Let Q) C IR? be a bounded domain and a € IR? fixed. For the
following linear variational problem

u € Hy(Q): /(a -grad u(x))(a - gradv(x))dx = /v(x)dx Vo € H}(Q)
’ "’ (0.1.2)

state the related second-order elliptic boundary value problem in strong form:
—(J,'U(mtsza%//)‘ - | |inQ,

M = 0

on 9Q).

Tk (a-gadu o gudv) = (aa”) gudn - gadv
alow) = | Agod - gadv ds = -dip Agadu = ..

(ﬂTgm%//t)(aTﬁ/ay/y> -
= gradu'(a @) gud v =
= ((Q{ ar) gladw)» ?I‘a%/% =
= (aa") giad 1 - 7/5/%7/



@

(0-1.b) [J (6 pts.)
such that

/(a-x)gradu( x) - grad v(x) + dx+/u (x)

o) 20
- ﬁ-v(x) ds(x) (0.1.3)
90
forallv € H'(Q)), where ) is a bounded domain and a € IR? is a given vector. State
the corresponding boundary value problem:

~div ((g,—zf)uqrw/ﬂ)f/x =1 0 |in q,
(ax\gadan + AL | =] | |on 20

We consider the linear variational problem: seek u € H'(Q))

Bc - /l/m?//zx( be. colerined n LVP | exdad thn thodd

Cieen's | Wi
\4
|mp€%m7(€ 17. C.

(0-2.a) (I (4 pts.) Denote by I, : C°(Q)) — SY(M,) the nodal interpolation
operator onto the space of M -piecewise linear Lagrangian finite-element functions.
Give the maximal sets of non-negative integers from which the parameters p and g in
the following asymptotic interpolation estimate can be chosen: For any

"76{ (7/|,0/2 }C]No,
‘PE{Q/S/({, ,,,,,, }C]No,

there holds true

3C > 0: fJu— L[ 2q) < Ch‘{’||u||H‘,;(Q) Vu € H'(Q)), Y/ € Ny.  (0.2.1)

Corollary 3.3.3.4. Error estimate for piecewise linear interpolation in 2D

Under the assumptions/with notations of Thm. 3.3.2.21

I = il 2y < /2 Haaltl ) -

|u = |1ll|H1(Q) < % OM h/M|”|H2(Q) ’

Yu € H3(Q) .

+ .
U|QS(M - m,//u@) -

&éqé min {+p,23 p VA

/REWW/Y“/SJ Chéﬁ //’0{////’0/58)

In this cont



©)
n (0.2.1) ~ 0] 8 pot
L, is wd dofind om ['(52) =
i il oot evaluclon

/JafﬁrMZ pecutcoz
(L/ /Q) J{/W/ HK@)

L,u = = M[x?b
xe M )
({m{ s
= oo c F(
(@:ﬂ? d b @Yw%m?;) @)

D = J passible -

Theorem 3.3.3.8. Sobolev embedding theorem

m > g = H"(Q)cC’Q) A IC=C(Q)>0: |ul,< Cllul|gmqy Yu € H*(Q) .

\

Nt b) b Hhe [vmd;@/

In a numerical test for a Neumann problem

—Au = inQ CcR? , radu-n=h onodQ),
g

(0-2.b) I (4 pts.)

the data were chosen to yield the exact solution u(x) = exp(— 1x]%). = smezoth

We write 1, € SY(M,) for the finite-element Galerkin solution obtained on the mesh
M by means of quadratic Lagrangian finite elements. Predict, how many steps of
uniform regular refinement of M have to be conducted to reduce |u — l“"|H1(m by a
factor of 1000 in order to gain three decimal digits: /

refinement steps.

Requireplare | &

Vo etz 0
em{% nafmd{ FE erwr = ﬁ[bé >
Tsp of ehment =, h—> Kb = em = ) en

(lb()m = S



@

. . (0-3.c) I (2pts.) In a LEHRFEM++-based code local-to-global index mappings
Let () C' R? be aboundefi don?a}m. For a given uniformly bounded vector field a : () — RR? for V,, and W, are encoded by means of If::assemble::UniformFEDofHandler
we consider the convection bilinear form objects. Complete the following lines of C++ code meant to initialize such objects
(ll, 'U) — b(ll, ‘()) = / a(x) . grad u(x) U(x) dx (031) (mesh_p |S a pOinter toa "::meSh::MeSh Ob]eC'[ for ./M):
Ja
for sufficiently smooth functions 1, v : (2 — IR. e For

1f: :assemble: :UniformFEDofHandler dh_V (
(0-3.a) (I (2 pts.) What are the largest possible Sobolev spaces V, and W, |

among L2(Q), H'(Q)), and H2(Q)) suchthatb : V, x Wy — R is continuous/bounded. mesh_p, {{lf::base::RefEl::kPoint(),

iy

{1f::base::RefEl::kSegment (), 0 } s

f
Vo=| H {g}] (space for u) , (1f::base::RefEl::kTria(), | O |},
W, = LI(Q) (space for v) . {1f::base: :RefEl::kQuad(), O YY)
(In each box, write one of L*(Q)), H'(Q)), or H*(Q)).) e For Wy

1f: :assemble: :UniformFEDofHandler dh_ W (
mesh_p, {{1lf::base::RefEl::kPoint(), | (/ | },

(0-3.b) [J (2 pts.) What are the dimensions of V;;, and Wy, in terms of the
numbers ’\\ {1f::base::RefEl::kSegment (), | /) },
e Ny of nodes of M, 7 ) - {1f::base::RefEl::kTrial(), b,
S, M Soi) |

e N, of edges of M, {1f::base::RefEl::kQuad(), / }1) g

AN
e Ny of triangles of M, = P‘ w. COIZ,C%(/?Z” A
e Ny of quadrilaterals of M ? \/
ofvarﬂ%m‘g&)‘( bnchyons J/ i e pot
dimVoy =|| ‘Nv+| O Ne+|O|-Nr+| | No,

dim Wy, =| () | Nv + |0 |- Ne+| | |'Nr+| [|-Ng.




g

X (0-3.e) (I (7 pts.) We implement an ENTITY_MATRIX_PROVIDER class for the
X2 9, (ﬁ) = ‘ “ XX, [-l ] finite-element Galerkin discretization of b as specified above:
Al = x UZ Compute the element matrix Ag € R for
7 ( - .
/ ) 3 [ (71 the bilinear form b, with the constant vector C++ code 0.3.2: Definition of CDBLFElemMatProvider
23 % - )<2 ! f|e|d template <typename MeshFunction>

class CDBLFElemMatProvider {
public :
// No default constructor
CDBLFElemMatProvider() = delete;
// Constructor takes a vectorfield argument
explicit CDBLFElemMatProvider(MeshFunction av) : av_(std::move(av)) {}
// The crucial interface methods for ENTITY MATRIX_PROVIDER
virtual bool isActive(const If ::mesh:: Entity& /+cell+/) { return true; }

a(x) =[],

and the finite-element Galerkin discretiza-
tion introduced above on the triangle K with

©® O N G A W N -

vertices [8], [(1)], [(1)], numbered as in the w0 | Eigen::Matrix<double, 1, 3> Eval(const If ::mesh:: Entity& tria);
a figure beside. 1 .
2 | private:
11 X1 13 MeshFunction av_;
14 |} |
7 ‘ , , "
Ak = |- % 2 / - The data member ay ~ will contain the coefficient x — a(x) as a

If::mesh::utils::MeshFunctionGlobal object, which is supposed to have an evalua-
tion operator

/ TV r< >
(AK j ‘J, = f [QJ 3/5{?{ ﬂ& ' / ﬁ/){ St:perz:;c: (:’o?:(l)?‘lst lf::mesh::Entity &K,

const Figen::MatrixXd &refcoords);
l |( / = % C ﬁ{ﬁ&f@(i{/f( @17&/70/’7 Supply the missing parts of the following implementation of the crucial Eval () mem-
ber function. It relies on the auxiliary function
std: :pair<Eigen::Matrix<double, 2, 3>, double>

getGradBaryCoords (const 1f::mesh::Entity &tria);

which returns, for a triangular cell passed in tria,

(i) a 2 x 3-matrix, whose columns contain the constant gradients of the barycentric
coordinate functions,

(i) the area of the triangle.




C++ code 0.3.3: Implementation of Eval () member function for CD-
BLFElemMatProvider

1 | template <typename MeshFunction>

2 [Eigen:: Matrix<double, 1, 3> CDBLFElemMatProvider<MeshFunction >::Eval (

s |const If ::mesh:: Entity& tria) {

a // Throw error in case no triangular cell

5 LF_VERIFY_MSG(tria.RefEl() == If::base::RefEl::kTria(),

3 "Unsupported cell type " << tria.RefEl());

7 // Fetch constant gradients of barycentric coordinate functions

8 // and the area of the triangle

9 auto [grad_bary_coords, area] = getGradBaryCoords(tria);

10 // Reference coordinates of quadrature nodes

1 const Eigen::MatrixXd refqrnodes { 3
12 (Eigen::MatrixXd (2, 3) << 0.5, 0.5, 0.0, 0.0, 0.5, 0.5).finished()};: & /R '
1 | std::vector<Eigen::Vector2d> av_values{av_( H’)&( ‘ 'f‘é#ﬂf'ﬂﬂéj‘)}; |
14 Eigen:: Matrix<double, 1, 3> elmat{Eigen:: Matrix<double, 1, 3>::Zero()})

15 for (int i = 0; i < 3; ++i) {% — LO&P oV L\SFl

w | for (int j = 0; < || ++i) |
17 | elmat(0, i) |[+=| (grad_bary_coords.col( \/ )).transpose () *av_values [ %«];
18 } =

/I\
lx b el makix

) * elmat;

} ,
20! return (‘&(/m/g

* Logp over WW/W% Pm}#s
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RR 6.3.2.33B

Lett € I — y(f), I C R aninterval containing 0, denote the solution of the autonomous IVP

y=1£(y) , y0)=yo-

Assume that f is continuously differentiable.
Use the chain rule to express y(t*) and y (t*) by means of f and its Jacobian.

Y ,
y(ﬁ”) - Bl () by DF —
= Grylt] = g Rlult]) = DRLE) (L) < Dit) J}F(yéé)) Fyl4)
M
chaan Wl e ep”
RR 6.3 2.33C

Based on the answer to Question (Q6.3.2.33.B), determine the order of a single-step method for the
autonomous ODE y = f(y), f: D ¢ RN — RR" smooth, whosé discrete evolution operator is given by

Yy =y + hi(y) + 3*Df(y)f(y) . \I/
where Df(y) € RNV is the Jacobian of finy € D. WWM A KW%Z/ 15?2{,” WW

Order of algebraic convergence of single-step methods

Consider an IVP (6.1.3.2) with solution t — y(t) and a single step method defined by the
discrete evolution ¥ (— Def. 6.3.1.4). If the one-step error along the solution trajectory satisfies
(® is the evolution map associated with the ODE, see Def. 6.1.4.3)

H‘I’”y(t) - <I>”y(t)“ < Ch"*! Vh sufficiently small, £ € [0,T], (6.3.2.22)
for some p € IN and C > 0, then, usually,

mexlye - y(t0)| < Thly,,

with C > 0 independent of the temporal mesh M: The (pointwise) discretization error converges

algebraically with order/rate p.



: cugt el RR 61.49.D
v . A .
OVIZ ) \Sl€(p ooy N ¢h¥ _ (2/)/ ”J}L / — & / hﬁ) \C o h = O Show that that the scalar autonomous initial-value problem .
=  SSM s p;/ /75/57- P y=v7 ., y(0)=0, Stale spacc: D= R

has at least two solutions in the state space IRO+ according to the following definition.

N ”’77 19 F / [ (5 > Definition Def. . Solution of an ordinary differential equation
>/ ' %[ >Z (% 2 A solution of the ODE y = f£(f,y) with continuous right hand side function f is a continuously
(0) — differentiable function “of time t"y : | C I — D, defined on an open interval |, for which y(t) =
f(t,y(t)) holds for all t € | (= “pointwise”).

dea oy ex o WLk t
l h T% W C/e How can this be reconciled with the assertion of the main theorem?
CP % = q) % + ﬁ% ( 0 % / ] h‘ (0 5’7 f 0 (}/7 ) Theorem Thm. 6.1.3.16. Theorem of Peano & Picard-Lindelof

..,é + j/) ~ /2 ( 0 )/2 ol 1,} ) If the right hand side function f : €) — R™ i§ locally Lipschitz continuous (— Def. 6.1.3.12) then
>L' for all initial conditions (t, yo) € (2 the IVP

2 VAR S ¥) n + /ﬂﬁ/y) £(yh 0 y=£(ty) . y(to)=yo- (6:1.32)

B CPSL - /U/ 7Z - / ; ) v b= O has a solutiony € CY(J(to, yo), RN) with maximal (temporal) domain of definition | (t,yo) C R.

> Odev P = 7 Hint. Considerthefurnction y(t) = (%t)z.

ODF - =y ", lye by spwbon of vanghles

= fv%mz = [Hom Jdr = t+C R
NG = el = y(é”\/é%)

V(U) =0 = C=0 - colubon ylt] ~ £t




= Other 9lehon -

Definition 6.1.3.12. Local Lipschitz continuity (—)

LetQ:=1x D,I C Raninterval, D C RN, N € IN, an open domain. A functions f : Q — RN
is locally Lipschitz continuous, if for every (t,y) € () there is a closed box B with (t,y) € B such
that f is Lipschitz continuous on B:

Y(t,y) € Q: 36>0,L>0:

|£(7,z) — f(t,w)|| < L[|z — wl|
Vz,weD:||z—y|| <96, |[w—y|| <5 Vrel:|t—1|<4.

(6.1.3.13)

Llz-w] (A=])

Flw)| £
%77

| (2] -
Hove: £(y)

£
/

lofnike slope G y=0 == nel Lipihtle continocns

2 =y

RR 61.49.E

For the autonomous scalar ODE y = sin ; — 2 answer the following questions

e What is the maximal state space? = ] = /R\ Qﬁ ]

e Which initial values for fo = 0 will allow a global solution,
e and for which will the solution be defined for a finite time interval only?

Hint. Make use of the geometrically intuitive statement: If a differentiable function f : [to, T] — R satisfies
f(t) < Cforallty <t < T,then f(t) < f(ty) + Ct.

£l) = gin - -3 £ fly) £~

. V/V#O
y(0) =y, - yoa% £ ylél = y0~t

>
{ﬁAO

AUl lubirrn 6y any v, < RIf
will hit O af some Hme
and thn  cene o oad

LN .
AN M&

\> \ % %)eﬂ/w
/mm i 4 olttin”

)

~
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HW Z.2f) [ Inplecat miel poand - methool T

C++-code 7.2.3: Example code - solve_imp_mid =* GITHUB

template <class Function, class Jacobian>
std ::vector<Eigen ::VectorXd> solve_imp_mid (Function &&f, Jacobian &&Jf,
double T, const Eigen:: VectorXd &y0,
unsigned int M) {
std :: vector<Eigen::VectorXd> res(M + 1);
// Construct the implicit mid-point method with the class
// Implicit RKIntegrator and execute the .solve() method.
// Return the vector containing all steps including initial and final value.
10 // Initialize implicit RK with Butcher scheme
11 unsigned int s = 1;
12 // Initialize coefficients for the implicit midpoint method
13 Eigen :: MatrixXd A(s, s);
14 Eigen:: VectorXd b(s);

0 ® N o o o w N

5 | bttt 2.

16 b << 1.;

17 CrossProd :: implicitRKIntegrator RK(A, b);

18 res =

19 RK.solve(std :: forward <Function >(f) , std :: forward <Jacobian>(Jf), T, y0, M);
20 return refs ;

21 |}

— A }empja/kdl foncken
M = /'W)ph'm‘ Re-SSM* w/ Bitho scheme

A
(e Sage ) lT

= Aot Guws -dloabion  SSH



Y uw 71 b)

Definition 7.3.3.1. General Runge-Kutta single step method

(cf. Def.

For b,’,[l,‘j €ER,c:= Z;:
(RK-SSM) for the IVP (6.1.3.2) is defined by

k; := f(to + cih,yo+ h Z a,-]-kj) ,

P y] — YO +IZ Zbik,’ .
j=1

i=1

As before, the vectors k; € RY are called increments.

[ Slage @ of empl Ri-SSM [

14ij i, =1,..., s, s € IN, an s-stage Runge-Kutta single step method

gi::hiaijk‘,', i=1,...
=1

,8, << k,‘

= f(to +cih, yo + gi) -

ki = f(t() -+ C,‘h,yo + h Ea’]k/) 7
=1

4

-_hZa,] (fo+cih,yo+gj) , y1= y0+112bft0+cjh,yo+g,~)-
] i=1

New'on ot fo ((m/R/y(//( di%w

g=1[g1,.--, gb]TERN,

i=1,.

..,S,

f(to + c1h, yo+ g1)
. B  Fg) =g-h@AIy) :
gi == h'y a,']'f(f() + th/yo + g])
j=1

f(to + csh, yo + 8s)

where I is the N x N identity matrix and & designates the Kronecker product introduced in .

(7.3.3.7)

(7.3.3.8)

}!

0,

\l

—> (\¢+1)

? 7). @F(?m ? (16))
Ay r/l/ - ﬂf& l;/
AoT, - . C [ prh
dy L,y — 7 U ’L/V
F(Z)

f

% £ (£ +Cgfz>/ O,Q/J]C

—

[$aL, = haee Sclbreh, wgk)]

T, -ha, Solerch yig) ~ha Zolboc g, )
“}’M{z,g\/ ($otch, y/rg)
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There is a connection between numerical integration (the design and analysis of numerical methods for
the solution of initial-value problems for ODEs) and numerical quadrature (study of numerical methods for
the evaluation of integrals).

e Explain, how a class of single-step methods for the solution of scalar initial-value problems

y=f(ty) v €ER,

, Yy(ty) =

can be used for the approximate evaluation of integrals fnb p(t)dt, ¢ : [a,b] — R.
e [f the considered single-step methods are of order p, what does this mean for the ind

method.

e Which quadrature formula does the implicit midpoint method yield?

B\/ Fondamantl thegrem Of caaleelis
s = Plhy) = y/b) =yila) + [ F/#)//é)g%
F F=R0), yla) =0 = yib) = [ Nz/‘?o%
> /@% N/ /*#(t yla) =

//W o f £14) ot allw A &7%/;

or >//5) = O/},)P)
Gy eq,m&éuk/m‘ /mmczip;
> SM povicer o compaiitc quiadtialoe i thef,

& quMWLS/KW LY a/% =1 o o p.

quadrature

SSM of odev p =

L/

Remnart - Keeall oethy p of a qﬂd%@km yels
= degw p-| o piypromanl exacthess

[R-SSM - ooy of SSH = o of QR ]

M - Y Y, + Thlrt),k (yry,)
y = A1)y =y s PR Er2)

[ROM w518, 4.) £ K825,

3,91
Z Cmm/pm,{/( WW/% W%&Wc sule



@R& 6.3.1.167D [BOL - Shdy vy =, v (0] = V.

We have seen three simple single-step methods for the autonomous ODE y = f(y), f : D ¢ RN — RV, >/( - >/(, - }7 % => % = J+ }f) >/0
here defined by describing a the first step yo — y1 with stepsize i € R (“sufficiently small”): [ [ [
e The explicit Euler method: N = /. T h -> = T T
2 [+h Yo < o (=h [+ >/ &
y1 = yo + hf(yo) . = 11— =+ N\

e The implicit Euler method: /(/0Jr < f?j BZC/ ‘f

yi: y1 =Yyo = hf(y1) .

e The implicit midpoint method: . < « _
A - 517/4%{% Vﬂ/,y(07~(

yii y1 = Yo+hf(%()’0+}’1)) :

_ . [ _ | . ( 7))
— 7N\ = N/ = -
For which methods does the associated discrete evolution operator ¥ : [—4, 4] x D — D, § > 0 suffi- \/) { h % /4 / ) // “T# Z) }7 / 4/7

ciently small, satisfy [ ~ZL

_I-Yhk /
- T -+ I’?Z /——;— + )

/ Y
Try to find a simple (scalar) counterexample, if you think that a method does not have property (6.3.1.17). D — [ 1 (_1;&__ €L 2}7 J;éév > — /
© Vo = ZIR s YA

' 9 by LM - \/, =Y, = bP(Z/\/,,M//))

(.3 7] sghshied by cony exad  evoluhion  optlr = DA A %?D(Z/W/ﬁy,))

REOL Sy vy =y (0] = Y, = \//%b,a[%(y/%yzw
Vo= |=h .y, = h+hll-h] = [-F=| Yo =N, if b soffaetly small

it sahs Ked !

&)5/




” RA 64.0.18B [ Adbrmvabon T

Recall that by “autonomization” the initial value problem

(6.4.0.19)

y=1f(ty) , y(to) =yo,

can be converted into the equivalent IVP for the extended state
T EIRN+1:

with f:IxD — RN

z=[z1,...,2nv,2n41] | = [y 1]

8(2) = [f(zl """" 2n)

; , z(0) = [Y"] .

(6.4.0.20)
fo

2=g(2)/

Let us apply the same 2-stage explicit Runge-Kutta method to (6.4.0.19) and (6.4.0.20). When will both
approaches produce the same sequence of states y, € D?

J - \sfaou explicel Rk -S8AU G ;L wc/é ;Z>
K, = Fltorch, v, ) - ole g
k, = #(tc,we%,y, + ha, k,) I b b,
i Yot h(bkoh))
= v, +hbfh, ) thh P rch, Y, +ha,, u%fo,%,»

Saume Rl -SSU oy ézg,/5>
Y- Oq(/z [Mé o4 ] Z/LZ]

= g/zﬁhdj,g,) - [ |

£ (o han, Y, tha, £ (L.,

%

f

= =, + h(b&+ bl
[ g }q %( [mé&,/ ]% b[@/ém,,y%wz \/»])

= F ot =t b (bi+6 ) oBEEE]

- J
iy’ onfshov
g
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HW g-3¢)
Abshact pmﬂ[?a&& el o piolen;
o (0,T]— V. m///'c,ﬂ +4&(///,7/) = ( VvéVp
T ///{/01 = 4, <
$.0.d. biliagar Gy
P&/[némivﬁwéﬁo/?s*&/;é Meqﬂaéz‘ﬁ/ ( DET)
3{>0 alu | = A/m/ﬂ,a) Ve V.

Lemma 9.2.3.8. Decay of solutions of parabolic evolutions

For f = 0O the solution u(t) of (9.2.2.4) satisfies
() |y < e lu0ll,y » Nu(®)]l, < e " |luoll, Vt€JO, T,

where y > 0 is the constant from (9.2.3.6), and ||-|| .. ||-||,, stand for the energy norms induced by

a(-,-) andm(-,-), respectively.
0L -0 bt M 4
YL LOVE ! 7 s b i

Mt + ﬂ/z/ (t) = O
mplicct  Gulor ﬁmmﬁcpp/? pltle
/{A [ ’Z]»Ué 7(((/ - _7 /4 v(lc



notms I - //M , /I //4

U—j(((/’]j = _T /4-3(!6
,_.7(/617 -—~7|IC1IU : ——v[w’/‘lu 2 (le1) > (Il 7 =)
” /f///ﬁ’”// g = -0 PUAp |
S //'(}ﬂd///{/f — /D’(w /&7(/( N /Uwc%ﬁ)czc
PFT = VAT
// 7((()// ﬁwW/y(,(,,) - / /Us(/

(ST = | VM7 Wl -1,
| =1 | < WM—m ) - Z// w7 (|<>//
I w “”///M = 477/, ey,
EXW/?M a&a:&% :

=V v

ﬁ) Cic )

/e RV

HW 3-2d)

HW 9.2 d)
by Paolo Bottoni - Monday, 17 May 2021, 10:08 AM

Hello there
| had a problem with this exercise:

how do we arrive to the pink part? is this important to know?

(9-2d) [ (20min.) | depends on Sub-problem (9-2.a) |

14

Compute the S{'( M) element (stiffness) matrix A g
corresponding to a(-,-) for the unit triangle K with
vertices [w “] and {H Assume that the edge

connecting [g] and [g] forms part of 9} and that
the coefficient ¢ is constant along this edge.

1
— by !
fgw/ﬂ grdv de + [y S

JeL

/ a,06 HE2)

i WZ %V A will be
[ compy b
enirl o g o

alu, v)



©, 303

A

See¢

2

A

Rmomddgrizabion of ¢
[ XA dS -

~  EBEleneat mabix -
K i: X %‘]
X K
"2 1 —1] 0 0 0
1 2
S|-1 1 0 +\Tc 0 2 1
-1 0 1] 7 |01 2

= céﬂ,ﬁﬂ?d&

Ex 2.7 937 £ (2Z244) )
x) = x ., A ) - X,
bel) 1T — ft]::n/é)

[+ (-4)

0

N/ SN

RA 7.4.0.10. A

The implicit midpoint single-step method applied to the autonomous ODE y = f(y) and with timestep /
leads to the recursion

Ver1: Yir1 = Y+ MG (yr + Y1) -

Derive the defining equation of the semi-implicit variant, which arises from solving the defining equation
for yx1 by a single Newton step with initial guess yy.

Flx) = 0  with

Flx) = ~h (Kl y))
DFlx) = T = hi?@(//m%[ ) ),
XUl = X — DP(@)F )

/m’ﬁ'&(/gﬂmf]: X = 9/
Yor=x 0V = Y 4 (T-hL DRI bRl



Yoa 74010 B

A Rosenbrock-Wanner (ROW) single-step method for the autonomous ODE y = f(y) can be defined by

RQ 9.2.2 10.B

Let O C R? be a bounded domain and p, k : (3 — IR uniformly positive coefficient functions. Derive the
i spatial variational formulation for the parabolic initial value problem
(I — I’l[l,','])ki = f(}’() +h Z(a,l + d,j ll] Zd’/k] J = Df(yO) p N
= (7.4.0.9) E(p(x)u) —div(x(x)gradu) =0 in Q:=Qx]0,T[,
Y1 :=Yo %Z b:k; . . ou \S‘]’?&'ﬂéﬁ
e \mPeM/\nd —> gradu(x,t) -n(x)+ w(x, t)=0 for (x,t) €90x]|0,T[, o
F//;e be
Derive its stability functions for s = 2.

u(x,0) = upg(x) forall x<Q,

r for given initial data u € H'(Q)).
Apply ROW-methodd by = Dy » T = A

Theorem 1.5.2.7. Green'’s first formula

q For all vector fields j € (Ch,(Q2))? and functions v € C},(Q)) holds
( / - /ﬂ A (/ 7 /<{ — Q%

./Q]'.gradvdx ::—./Qdivjvdx—{— /aol nvdS. (15.2.8)
(|- ha, )k, = Q/%+ h(aw%ﬁ/ﬂ)k,)

et o i 01 091 i
| [~ha, ) |

l, = v»/mz;} (Q% + hia; /f'//j);/fﬂ f@t(g& l9(c) - W(?}(@[ﬂg/ﬂ%m)v(x)%x =0
An

Vore H (5?)
7= b.p fﬁ(% e tlolc el fia(r A it \éf/zr/’u&k&
VAR W% %@M?)&)/éé = 0

_ - = - (x)
(=) Do U lxb) %rf:n //z ) A S(X |




> R 32z 1©.C

Let O C IR? be a bounded domain and p, x : 2 x]0, T[— R be uniformly positive time-dependent coeffi-
cient functions. Derive the correct spatial variational formulation for the parabolic initial value problem

J . -

o —(p(x, t)u) —div(k(x,t)gradu) =0 in Q:=Qx]0,T[,

w/ ‘ﬁ/l?&éﬂﬂﬁ = u(x,t) =0 for (x,t) € 9Q2x]|0,TJ,
w6 ///a [Q) u(x,0) = up(x) forall xeQ,

for given initial data 1, € HNO).

V' Mo chamge dipite W degpeidens  cofliceent's

jéff(ff o< dx -+ f@[ﬂf 5%/// y(ﬁ/ﬁ dx = O
Vo6 H,(52)

W%&/ eqgemnvnbeers
%Wﬁe(ﬂﬂb%d EUP - ﬂ// ﬂ /M/M (]

[ A Me RY™T
R . HWW
N o MAP = A5 s S M
sl EVP AM'E =35
> Svoppl. $23220- -




NumPDE@ETHZ




NumPDE@ETHZ




D

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Numerical Methods for
Partial Differential Equations

Prof. R. Hiptmair, SAM, ETH Zurich

Spring Term 2021
(C) Seminar fur Angewandte Mathematik, ETH Zrich

R & A Session
My 5 | 2071

11.2.4 Jump Conditions
by Michael Vollenweider - Thursday, 20 May 2021, 11:41 AM

Could you please explain the pillbox thought experiment in a little more detail?

Thank you!

—> See Mjmn/(o( bctrre dsceument /
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X - Sbapé nchovn  amd geomehic enblbie,
| = Sect 253 4" § 27413

Hi,

could you explain again the difference between a global/local shape function covering an entity and a GSF associated with a

geometric entity? f m A/?m m&/
X = @i #w%fbwa/ Shape Crcho
aAssocioCA 2enth

Maybe you can use the triangle in exercise 2.9 c) as an example.

Support of node-associated basis Support of edge-associated basis Support of gell-associated basis
function, cf. Fig. 99 function function

Note - /gmy M% / %% é%% ?@wzdﬁm/z s/ anocdeA with
Bample . V= Lo L(R) - v € DR Vke M
=2 Thiet j[o&w( 564{/)/ onchiow  aonceelod  arith wmycz/é(

ssve - flaning of ‘coverigy " fov disiobivion FE spacer



& Relahed

=z @O@H&(WM/V membery fonchons

$I7Z415
12174 ki
&'&%ﬂﬁ %5“( Z ) S gk/ a///;anp’;m‘ m/fgf (W%
~Xaf / <
= 4 ‘- Lﬁ?sz/fm)f) ﬁ%ﬂ o
[ | GSF gk zm‘/) e‘aﬂé {)0(/;@(
/ &S 2SI / ﬁg :(
2 el o
o CF cavmgm// /vwﬁ(( meao/@/ with Jﬂg( /4/7(/)

— 3 GCSF CWﬁﬂﬂdﬂ am ea%z

%mﬁ

edg{

{ Lt Weices) =

Ihic F (s wmeeded wit

(ZSF ameeiile ) with

el

Aotahion
Lagrméxfdm FE <paceon: S /f/ M)
Disconhnuovs FE et 5}; (]

| also have a question. Could you explain the difference
between a functor and a mesh function and why we

sometimes have to use mesh functions instead of functor
?

fonchy = daba w/ﬂ/ o%mi% «  outhoA
X 0pem5v() (ARE)  const
[ alo A - Ffs ]
LE+ Mehtonchiom £ a &Peo{cé/ fonchoy 7%{

(W( é.g_, % wieyp ¢ ltent ¢ e onchong )
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