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It is highly desirable that questions are submitted at least a few hours before the start of the Q&A session
— so that the lecturer has the opportunity to structure his or her answer. Submission of questions should be
done through dedicated DISCUNA chat channels. A separate channel has been set up for each week in

which a regular Q&A session will take place. J
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(1) Course directory page:
https://www.vorlesungen.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?lerneinheitld=188112&
semkez= ansicht= ang=de
(2) Moodle page: https:/moodle-app2.let.ethz.ch/course/view.php?id=24006
(3) Lecture document: https://www.sam.math.ethz.ch/~grsam/NUMPDEFL/NUMPDE.pdf
(4) Homework problem collection:
ttps://people.math.ethz.ch/~grsam _Problems.p
(5) Course code repository: https://gitlab.math.ethz.ch/ralfh/NPDERepo
(6) Course repository: https://people.math.ethz.ch/~grsam/NUMPDEFL/
(7) Course polybox folder:
https://polybox.ethz.ch/index.php/s/Mn25THrx1yjvcPw ,
PW: NPDE25 (contains course videos and tablet notes)
(8) Discuna join link: https://app.discuna.com/invite/9QLX70oxbfNI22FceUwEM
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Mid-ter Problems

Problem 0-1: Strong and Weak Form of Elliptic BVPs

Elliptic boundary value problems as part of mathematical models come in various guises: some

are stated as boundary value problems for PDEs in strong form, some are given in weak form

— as variational problems. Both forms can be converted into each other and this is the focus of this —
problem.

—— |  This problems is connected with [Lecture — Section 1.5] and [Lecture — Section 1.8]. —

> problem name/problem code folder: StrongWeakEIIBVP

—— (0-1.a) [J (6 pts.) State the complete variational form (in appropriate Sobolev spaces) of the ——
following second-order elliptic boundary value problem on a computational domain () C R?:
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(0-1.b) (I (6 pts.) Determine the boundary value problem in strong from, whose variational/weak
form reads:

Seek u € H'(Q)) such that

Jv

- /Q;—;(x);—;(x)%—a(x);;( ) e (x) + a(x)u(x)o( dx—/l) x)dx Voe H'(Q),

~ wherea € C°(Q) is a given coefficient function.
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(0-1.c) [J (4 pts.) Let OO C R? be a bounded domain. Give an alternative and simpler
characterization of the following set of functions

— A= {a € C'(Q) : Iy > Osuchthat a(a;v,0) > 'y||v||%,1(0) You € Hl(Q)} , —
with  a(a;u,0) /an (x )ax (x) + a(x’— x)— x) + a(xu(x)v(x) dx

foru,v € H'(Q)).
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Problem 0-2: Galerkin Matrices

Abstract Galerkin discretization of a linear variational problem leads a linear system of equations,
whose system matrix is called a Galerkin matrix. This problem examines Galerkin matrices for
typical bilinear forms connected with second-order elliptic BVPs from in an abstract setting and for
a concrete finite-element trial and test space.

— | You need to be familiar with [Lecture — Section 2.2.3] and [Lecture — Section 2.4.5.2].

> problem name/problem code folder: GalerkinMatrices

— Let Q) C IR? be a regular hexagon in the plane. Throughout this problem we deal with the two bilinear
forms

— m(u,v) := /Q u(x)ov(x)dx, u,v € L2(Q), (0.2.1)

o a(u,v) := / grad u(x) - grad v(x) dx, u,v € HY(Q) . (0.2.2)
Jo

o (0-2.a) [ (4 pts.) Let V,, € H'(Q)) be some finite-dimensional space equipped with some basis

— B:={b,...,bN}, N:=dimV,. We write M € RM" and A € RNV for the Galerkin matrices
induced by m and a using ‘B, that is,

. . 1N i N
— M= [m@), b)), A=[a@)b)] . 0.2.3)
’ i,j=1 i 1,j=1
Decide, which properties of A, M, and A + M hold for any choice of V}, and ‘8.
S matrix | symmetric | positive definite? regular® sparse’
— n | oves @ yes @f —yes @ yes ()
o no O no Q no Q no g
ves 0y O | ves O | yes O
B o O | o K| e X | e X
— es @ es ng — es
Asm| Y y —yes Qﬁ yes ()
- o O | e O\ o O | o
aA matrix X € RNV is called posjtive definite, if ¢ X& > 0 for &l & € RN \ {0}.
— bA square matrix is called regular| when it is invertible.
- ®Here we call a matrix sparse, when it has a fixed small N-independent number of non-zero entries per row.
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In the sequel we consider finite-element Gal
cretization based on the trial and test space {’(,-'\/l)
of lowest-order Lagrangian finite element functions
based on a mesh whose cells are all congruent equi-

Mo b-c.

lateral triangles, see Fig. 1.

prised of tent functions.

in dis-

Throughout, we use the nodal basis of S (M) com-

B (0-2.b) (I (5pts.) What are the dimensions of the following spaces

- dim SY(M) =

H 00 )

dim AN (M) =

0

B dim N (A) =

|

Here,

_ edges, and the number M of triangles of M.

« N(X) stands for the kernel/nullspace of a matrix X.

/ [ %% VW/Z CWM j
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* M and A are the S?(M)-Galerkin matrices for the bilinear forms m and a, respectively.

Note. You may write your answer in terms of the number £V (M) of vertices, the number ££ (M) of

s
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(0-2.c) I (3 pts.) It is known that for our S?(M)-based finite element Galerkin discretization
using the mesh sketched in Fig. 1 all element matrices for the bilinear form a are

2 -1 -1
— -1 2 -1| e R332,
-1 -1 2

Explicitly write down the set of diagonal entries of the Galerkin matrix A:

{(A)i,,.,i=l,...,dimS§)(M)}={ (/// 6/ [ }

(A);; by summing diagonal entries of element matrices of adjacent triangles




Problem 0-3: Parametric FEM: Local Computations

In the case of parametric finite element methods the computation of element matrices can be orga-
nized efficiently by precomputing many expressions on the reference element(s), see [Lecture —
— § 2.8.3.6]. In this problem we recall the relevant formulas.

Assumes familiarity with [Lecture — § 2.8.3.6], [Lecture — § 2.8.3.14], [Lecture — § 2.8.3.15],
— | and [Lecture — Eq. (2.8.3.13)].
> problem name/problem code folder: LocCompParamFE

— Asin [Lecture — Ex. 2.8.3.29], in this problem we consider the bilinear form
a(u,v) := / a(x) grad u(x) - grad v(x) +'y‘u(x)v(x) dx, u,ve H(Q),
0

~ on a polygonally bounded computational domain ) C IR?. Here, a : 0 — R>? and ¢ : Q) — R are uni-
formly positive (definite) coefficient functions.

- (0-3.a) I (8 pts.) In the context of parametric Lagrangian finite elements the following formula
—  provides the entries of the element matrix [Lecture — Def. 2.7.4.5] for a mesh cell K € M:

- ,
(A= Y| Al(a( B)oe( Cl) fgraat() D)) (oo E})Tgmaa) F )+

(=1 4

- a G)EE@)F@))| HY, ijefr..Q.

Put the appropriate expression into the placeholders by ticking the corresponding column:

— expression
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Symbols: «wpeR,Le{l,...,P}, P e N = quadrature weights of local quadrature rule on K,

Zp, ¢ € {1,..., P} = quadrature nodes in reference element K,

®: KK bijective mapping from reference element Kto K,

b,je{1,...,Q}, Q € N, local shape functions on reference element K.
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(0-3.b) (I (4pts.) The If::geometry::Geometry and If::quad::QuadRule classes of LEHRFEM++
provide a number of member functions to support the local computations for parametric Lagrangian finite

elements.

In the table below Match the member functions and expressions that play a role in local computations
in the context of parametric Lagrangian finite elements: the member function is to offer direct access to
the expression (We use the symbols introduced in Sub-problem (0-3.a)).

Member function ZE

@)

1 Geometry::Global ()

1f::quad::QuadRule: :Weights ()

— Geometry::IntegrationElement ()

1f::quad::QuadRule: :Points ()

OO0 0

—t Geometry::JacobianInverseGramian ()

Olol=|0l0k

Here Geometry stands for 1f: :geometry: :Geometry.
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