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By the method-of-lines approach as outlined above we arrive at an ordinary differential equation of the

form
Mji + Bji + Aji = ¢(t) , (6.4.5)

with matrices M, A, B € RVN and a time-dependent vector ¢. Here N stands for the dimension of the

finite element test space.
Give concrete formulas for the entries of M, A, B € RNN and the components of .

> %M % bons  baoved G fepeailad nile
= D’MZ%/ZX a%djm%/(
/?ﬂ;ﬁ i

@Z\fZ

ngy%[n mahq ) L GU FEW N4
(% \ (1 -1 \

! -1 2 -1

Afull:% ‘ . |

! 1 2 -

\ ) \ 11

AZMO(//ZZ/ gf%oﬁfml b.c. ane Bhea wf account
Z pelt) by = gl8)e e

u, [£] = 2~
A/:aoﬂl‘m(\gf/%/)n%) lent Fpm/ffaﬂ =7

We St o
% (%,,(7,‘)7 )*/)/M&](vz bi)talu,tb) b)) —

VA
7), S

—ﬁc(d@lf} ,
{ T 4 14)

Mfull = h

&\,
%%

—



& Léﬂ/) ﬁ?% Hméé/tﬂp}% : T/'>(?)¢/\

—(j+1/2) —=(j—1/2) =(j+1/2) —=(j—1/2)

v — vV _ (j)__ v +v )
M - Apu B > +qo(t]) ,
=(j+1) _ =(j) N
H _ =(j+1/2) —3

- =V : AA /{f/‘ég, >
bl ko . g, g0

/7}5759%% )

(6.4.6)

(6.4.7)

Cy) Am /DZW&%%W (){ Wpﬁ’v% 6%%//;/% m

oM/ —

—il) + Tv<;+1/2)

R

—TA],l - TBvo + 2Mv0 + Tq)( ).

muﬁw(vafm =

, ] €Np,

— 1By e MoV D) L 1g(t), jEN.

O (6.4.9)

(6.4.10)
(6.4.11)

1D wave propagation with absorbing b.c.
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@/ In the file 1dwaveabsorbingbc. cc write a C++ function
std: :pair<Eigen::VectorXd, Eigen::VectorX
const Eigen: :MatrixXd
double ¢, double tau);

1> computeEnergies (

&full_solution,

that accepts as an argumment the output matrix of waveLeapfrogABC () from Sub-problem (6-4.c)
plus the constant ¢ and the timestep size T > 0, and computes the discrete energies (using the notations

of (6.4.6))

These energies are returned as a pair of vectors, the potential energy in the first component, the kinetic
energy in the second.
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% / Now we consider the method-of-lines ode (6.4.5) without excitation, that is, in the case ¢ = 0.
Show that even in this case he total energy

E(t) = 5ii(t) Mi(t) + (1) A()

will not be conserved, but decay, that is, t — E(t) is decreasing, if ji() solves (6.4.5).
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