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ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Homework Problem Video Tutorial

Problem 3-1: Computing Averages over the
Boundary

Prof. R. Hiptmair, SAM, ETH Zurich

Date: March 29, 2019
(C) Seminar flr Angewandte Mathematik, ETH Zlrich
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Theorem 1.9.0.10. Multiplicative trace inequality

3C=C(Q) > 0: ||”||i2(a()) = C||“||L2(Q)' ||”||H1(Q) Vu € HI(Q) .
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@ Aveaclable

template <typename FUNC_ALPHA, typename FUNC_GAMMA, typename
FUNC_BETA>

Eigen::SparseMatrix<double> compGalerkinMatrix (
const 1f::assemble::DofHandler &lfe_dofh,
FUNC_ALPHA&& alpha, FUNC_GAMMA&E& gamma, FUNC_BETA&LE beta) ;

ue H(Q): /Q w(x) grad u(x) - grad v(x) + 9p(x) u(x) v(x) dx + /BQ B(x) u(x)v(x)dS(x) =

/]\ / f(x)v(x)dx Yo e HY(Q), (3.1.2)
JQ
ali, )
\{j Based on the function compGalerkinMatrix (), write a LEHRFEM++-based C++ function
/ double compHlseminorm(lf::assemble::DofHandler& dofh,
const Eigen::VectorXd& u);

that computes the norm |v),| Hi(q for a function v, € SY(M) passed through its vector u of expansion

coefficients with respect to the customary “tent functions” nodal basis of S? (M). The argument dofh

passes an If::assemble::DofHandler object providing the mesh M and the local-to-global index mapping
for SY(M).
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- Again based on the function compGalerkinMatrix, write a LEHRFEM++-based C++ function

/ template <typename FUNCTION>
double compBoundaryFunctional (
const 1f::assemble::DofHandler &dofh_1fe,
const Eigen::VectorXdg u, const FUNCTION& w);

that evaluates the functional F from (3.1.1) for a function v;, € S?(M) passed through its expansion
coefficient vector u with respect to the customary “tent function” nodal basis of SIO(M). The weight

function w is made available through the functor w, while argument fe_test passes an object describing
the piecewise linear Lagrangian finite element space.

template <typename FUNC_ALPHA, typename FUNC_GAMMA, typename
FUNC_BETA>

Eigen::SparseMatrix<double> compGalerkinMatrix (
const 1f::assemble::DofHandler &lfe_dofh,
FUNC_ALPHA&& alpha, FUNC_GAMMA&& gamma, FUNC_BETA&& beta) ;

ue H'(Q): /Qa(x) gradi(x) - grad v(x) + y(x)ar(x) v(x) dx + /,2 B(x)u(x)ov(x)dS(x) =
aC

A}f(x)v(x)dx Vo e HY(Q), (3.1.2)
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u e H(Q): /gradu( ) - grad v(x) +u(x) v)dy Yoe H(Q).
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Based on the multiplicative trace estimate from [Lecture — Thm. 1.9.0.10] and assuming f € L?(Q)),
describe qualitatively and quantitatively the expected asymptotic convergence of

(3.1.6)
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| —unll200) = </ |u(x) — up(x)[* dS(x )) (3.1.8)

in terms of the meshwidth /1 := h — 0. C ﬁ) )%M/}’)Zf)i 80/74% j

Theorem 1.9.0.10. Multiplicative trace inequality

IC=C(Q) > 0: ||“||i2(a()) < C““”LZ(Q)' ||“||HI(Q) Vu € HI(Q) :
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Theorem 3.1.7. Regularity of solutions of Neumann problems

// /M'/{/{h //
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Assume that Q) is a convex bounded Lipschitz domain. If f € L?>(Q) and g € H'(9Q)) such that
Jo fdx+ [, 8dS = 0, then every solutionu € H'(Q), [udx = 0, of

—Au+u=f in Q, gradu-n=g on 9,

satisfies

u < H2(Q) and ”U”HZ(Q) S C(”f”LZ(Q) =+ ”g”Hl(aQ)) ’

with a constant C > 0 depending only on ().
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| — “h||Lz(aQ) < Cllu— up| 20y [l — | () -
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| —upll2(q) < Chag- inf |[u —op| ()

uE€Vo,N

inf ||u— oyl

< Chpglu|
vR€Vo,N ) ’ HA(Q)

3
||u — ”hHiZ(BQ) <Chly = |lu— u;,||Lz(aQ) = O(lzL) for hpy — 0.
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Theorem 3.6.1.7. Duality estimate for linear functional output
Define the dual solution gr € Vj to F as solution of the dual variational problem
gr€Vo: a(v,gr) = F(v) Yoel.

Then

|[F(u) = F(up)| < lJu—uyll, inf [igr —opl]

i — . 3.6.1.8
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a(v,g5) 1= /gradu -gradgr +ogp dv=F(o) = / odr YoeH(Q).  (319)
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Which asymptotic convergence of |F(u) — F(uy,)| in terms of i := hy — 0 is predicted by’ duality esti-
- mates for a piecewise continuously differentiable weight function w < C ‘m (0())? Justify your answer.
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Theorem 3.1.7. Regularity of solutions of Neumann problems / X

Assume that ) is a convex bounded Lipschitz domaln /f feL2(Q) andg € H(0Q) such that
Jo fdx+ [5,8dS = 0, then every solutionu € H'(QQ), [udx =|0, of
~AMu+u=fF)in Q, gradu~n=/g/ on 0Q),

satisfies

u € H*(Q) and 2]l g2

a) < Cll fllez) + 118l o))

with a constant C > 0 depending only on ().

Theorem 3.6.1.7. Duality estimate for linear functional output

Define the dual solution gr € Vj to F as solution of the dual variational problem

gr € Vo: a(v,gr) = F(v) Yove V.
Then
F(u) = F(u)| < =il ing llge =il (36.18)
01
F) = F)] < flu =l _inf Jlge = oull
0N
r
(e s W/M] = inf |u— "Iz||ulm ||8F—Uh||Hl
v €V vR€Vou
< Chp inf ||gF —0pll gy < Chye inf |[gF — vpll 1) -
0,h L’},EV()\'
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Theorem 3.3.5.6. Best approximation error estimates for Lagrangian finite elements

Let ) C RY, d = 1,2,3, be a bounded polygonal/polyhedral domain equipped with a mesh M
consisting of simplices or parallelepipeds. Then, for each k € IN, there is a constant C > (
depending only on k and the shape regularity measure p \4 such that

hapq
inf u—17u <C
0,€SY(M) 4=l o ( p )

oy p =7

min{p+1,k} -1
] HY(Q)

for k=2

Yu € HY(Q) . (3.3.5.7)



@ 2 ( C++11 code 3.1.12: Sub-problem (3-1.9): C++ function
? E S é—~/ approxBoundaryFunctionalValues () => GITLAB

> | std :: vector<std :: pair<unsigned int, double>> approxBoundaryFunctionalValues(
unsigned int L) {
std :: vector<std :: pair<unsigned int, double>> result{};

£ llgr = vnll ) < ClIgell e a

3
4
VO h s | /* SOLUTION BEGIN */
6 auto meshes = generateTestMeshSequence(L — 1);
7 int num_meshes = meshes—>NumLevels () ;
8 for (int level = 0; level < num_meshes; ++level) {
2 2 ] auto mesh_p = meshes—>getMesh(level);
F u) — F u < Ch > U > — O h for h. — O 10 // Set up global FE space; lowest order Lagrangian finite elements
|F(u) — F(up)| < Chiy lIgr |2y llull m2(q) = O(Fy) M : 2| e b e
12 std :: make_shared<|f :: uscalfe :: FeSpaceLagrangeO1<double >>(mesh_p) ;
13 // Obtain local->global index mapping for current finite element
sSpace
. — . . - . . 14 const If ::assemble:: DofHandler& dofh{fe_space—sLocGlobMap() };
Finally, we want to test.the predictions of our theoretical estimates in a numerical experiment. To that end . const If ::base::size_type N_dofs(dofh.NoDofs () ):
] the LEHRFEM++ function 6 If ::uscalfe :: MeshFunctionConstant mf_identity {1.};
. 17 // compute galerkin matrix
std::shared ptr<MeshHierarchy> . . 18 auto A = AvgValBoundary :: compGalerkinMatrix (dofh, mf_identity,
generateTestMeshSequence (unsigned int L); mf_identity ,
in the file avg_val_boundary. cc provides a (pointer to a) If::refinement::MeshHierarchy object that b Y N . (Tf—'de"“ty);
. . . 20 — .
contains a sequence Mo,Ml.,...,ML of L+1€ ngshes c'reated by successive reg.ularﬂreflnement N auto f = [](Eigen::Vector2d x) — double { return x.norm(); };
of a triangular mesh of the unit square () =|0, 1[2. In this domain we consider (3.1.6) with /(x) X = If :: uscalfe : : MeshFunctionGlobal mf_f{f};
and its Galerkin finite element discretization based on S?(M). 2 Eigen :: Matrix<double, Eigen::Dynamic, 1> phi(N_dofs) ;
We write 1, € SY(M,) for the finite element solution on M. Based on compGalerkinMat rix() 24 IID:‘.':SG‘ZGI;OQ_lS arLoadE] WeetorProvider <doubl
(also for the computation of the right-hand-side vector of the (;alerk ear system of ” "dl;sc(:fypi‘('mfcida;n?iaty)>emen ectorrrovider<double.,
equations) and compBoundaryFunctional () implement a C++ function Iso in the file u e,\,ec_bui,d_er(fe_space’ mf_identity ) ;
avg_val_boundary.cc) 27 AssembleVectorLocally (0, dofh, elvec_builder, phi);
std::vector <std::pair<unsigned int, double>> N 1) ol G oi e
approxBoundaryFunctionalValues (unsigned int L) % Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver;
| . A);
that computes the values F (1) for £ = 0, ..., L and returns them in a vector togeth r with the dimension ¥ SO ) o
- 0 32 Eigen::VectorXd u = solver.solve(phi);
of the finite element space S;(M). -
2 // set up weight function
35 auto w = [](Eigen::Vector2d x) — double { return 1.; };
, ) U{(/ﬁ&\/ Pmm M% 36 If ::uscalfe :: MeshFunctionGlobal mf w{w};
a7 double functional_value = compBoundaryFunctional(dofh, u, mf_w) ;

> 38
d/ o 0 39 result.push_back({N_dofs, functional_value});

41 /* SOLUTION END */

rP‘ 42 return result;
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In the setting of the Sub-problem (3-1.g) we choose L = 7 and use F(u7) as a substitute for the unknown
value F(u).
o Extend the main () function in main.cc so that it tabulates F(u;) — F(uy) as a function of
N := dimS?(Mp”).
o Describe qualitatively and quantitatively the “convergence” of F(uy) — F(uy) as a function of
Np = dim S} (M) for £ = 0,...., 6 as £ increases. q\
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Error in output functional F

102
I~ __'___;::”4)
N | |F(u)F(uy)| 2
13 [ 1.3E-03 = R
40 | 3.6E-04 g N
139 | 9.5E-05 b Sl
517 | 2.3E-05 = S N
1993 | 5.6E-06 103 N
7825 | 1.1E-06 . O
N
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N=dimS (M)
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