ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Homework Problem Video Tutorial
Problem 3-2: Debugging Finite Element Codes

Prof. R. Hiptmair, SAM, ETH Zurich

Date: March 29, 2019
(C) Seminar flr Angewandte Mathematik, ETH Zirich

/gradu gradv dx = ((v) := /f(x)v(x)dx Yo € H(Q) (3.2.1)

ue H(Q): a(u,v)
SO - PEM ENTITY. MATRIX _ PROVIDERS

1\ Laca/i&(/ﬁ[&zc(ZFE% = 7,93
MM/V)%//W mwhes

A

Implement a C++ function

template <typename FUNCTOR>

Eigen: :Ve Xd interpolateOntoQuadFE(const

lf rassemble: :DofHandler &dofh, FUNCTOR &&f);

that accepts a If::assemble::DofHandler argument dofh for the finite element space Sg(./\/l) and a

functor object for a continuous function f & C%(Q)). It should return a vector with the basis coefficients

of the nodal interpolant |2‘£;'€ SO (M). This particular piecewise quadratic interpolation is presented in
[Lecture — Ex. 2.6.1.2].

Do not forget to equip your function with checks for consistency using the LF_ASSERT_MSG () macro.

Lf = 2° flb)bf a,w/;)) £(p)

- Yped
@%}
e b Jmamé% /
mﬁm %&h % Ve A5V

N
%

C++11 code 3.2.2: Sub-problem (3-2.a): function interpolateOntoQuadFE () =* GITLAB

2
3
4
5
6
7
8
9

~~

template <typename FUNCTOR>
Eigen::VectorXd interpolateOntoQuadFE(const If ::assemble:: DofHandler &dofh,

FUNCTOR &&f) {
// get mesh and set up finite element space
auto mesh = dofh.Mesh() ;

// initialize result vector
const size_type N_dofs(dofh.NoDofs());
Eigen::VectorXd result = Eigen::VectorXd::Zero(N_dofs) ;

/* SOLUTION_BEGIN */
for (const If ::mesh:: Entity &cell : mesh—>Entities (0)) {
// get local to global map for the cell
auto glob_ind = dofh.GlobalDoflndices(cell);
for (int i =0; i < 6; i++) {
// update the result vector

auto coords = globalCoordinate(i, cell); Z£— C@EZ{W 0}/
result(glob_ind[i]) = f(coords); (9('4// /hkf&bﬁéﬂf
}
} T Ve /I / ?)&ﬁé/
/% SOLUTION_END */ no +=
return result; ’

(Deéz; ﬁgll/}j g%n/éﬁw% nnoniorn

Lalv,u) - alT,u,La)l

Theorem 3.2.4. Interpolation error estimate for quadratic Lagrangian FEM

Let Q) ¢ RY, d = 1,2,3, be a bounded polygonal/polyhedral domain equipped with a simplicial
mesh M. Then the following interpolation error estimate holds for the nodal interpolation operator

> onto S3(M)

[t = haul[g1y < Chmi“{?"k}_l]u\Hk(Q) Yu e HY(Q), k=2,3,

with a constant C > 0 depending only on k and the shape regularity measure p .

la(u, u) —a(lau,lou)| = |a(u + lou, u — lyu)]

4o b = (atbllab)

<+ pu|| 4| —lou| 4 (Cauchy-Schwarz)
< ([l 4+ 22| o)1t — o] 4 (A-ineq.)
= (|lu|| 4 + ||lou — w4+ u|| 4)||u —lou| , (Add zero trick)

< (2llull o + [l = Toull o) |Ju = oull, (A-ineq. and || —al| = ||al|)

< C1|ll|H1(Q)|ll|H3(Q)I'12 + C2|u|%[3(0)h4 Use theorem above

SC3|“|H1(Q‘)|M|H3(Q_)hz' = ﬁ/ bV;) = 0//(/4)

N odim S IM) w h,*

@ In the file gfe_provider_tester.h flesh out the implementation of the templated class

template <typename ENTITY_MATRIX_ PROVIDER>
class QFEProviderTester ({
public:
QFEProvideTester (1f::assemble:
ENTITY_MATRIX_PRO

:DofHandler &dofh,

VIDER &element_matrix_provider) ;

template <typename FUNCTOR>
double energyOfInterpolant (FUNCTOR &é&u) f4>¢4?[2z;¢ﬁ][5</:>
private: ¢
1f::assemble::DofHandler &dofh_;
ENTITY_MATRIX_PROVIDER &element_matrix_provider_;
/+ Further private data members x/

i

The template parameter ENTITY_MATRIX_PROVIDER must be a type that fits the local Laplace element
matrix provider classes LocalLaplaceQFEX, x=1,2,3.

The method energyOfInterpolant () should accepts a functor object u encoding a continuous
function u defined on the domain covered by the mesh associated with the dofh object with which the
current instance of QFEProviderTester was initialized. The method should return a(l,u,l,u1) based on
the element matrix provider object with which the current object of type QFEProviderTester was set up.

const;

C++11 code 3.2.7: Implementation of member function energyOfInterpolant () of class
QFEProvideTester => GITLAB

> |template <typename ENTITY_MATRIX _PROVIDER>

s |template <typename FUNCTOR>

s+ |double QFEProviderTester<ENTITY_MATRIX_PROVIDER >::energyOfinterpolant(
5 FUNCTOR &&u) const {

6 double energy;

7 /* SOLUTION_BEGIN */

8 Eigen:: VectorXd eta = DebuggingFEM::
9 energy = eta.dot(A_ x eta);

10 /+* SOLUTION_END %, \
\ S -6
Lt a Ty Y MarP]

interpolateOntoQuadFE (dofh_, u);

w@w@n matix bom

=

11 return energy;
q/w '{/(.”W, V7 < /Y ATT

ﬁgg'\%@ﬂﬁ by moyemé%ﬁ

Convergence : Assembler 1 Convergence : Assembler 2 Convergence : Assembler 3

T T TTTTTI

T T T T F—T T
E E 3 3 3
¥ L E L E !
s E E s E E s E
g E 3 g E e E
w o w o \.U"
b E o = o X
E E 3 E E
°F :3[

X] 3

1ol Lol Lol 11l

111l Lol ol R
I

T TTTT

ol v oomd teonnd s v vvied veeid saiw

10 w "w 10 w
Num Dofs

Ay
o) =0(h,)

3

Num Dofs Num Dois

1/4[0/1. o /e wf’

Ol) = Olhyy)

= {lwed
> o
c) o crde n‘aj e o

7 s conecd

«C/ Ascconbbn 3
Assepibly 7 & 2

[lipody

oy

JaTA)

NumPDE@ETHZ

NumPDE@ETHZ

NumPDE@ETHZ

NumPDE@ETHZ

