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C++11 code 2.8.1: Sub-problem (2-8.c): Implementation of soclve () = GITLAB
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template <class ELMAT_BUILDER, class ELVEC_ BUILDER>
Eigen::VectorXd solve (ELMAT_BUILDER& ‘elmat_builder ,
ELVEC_BUILDER& elvec builder) {
// Use one of LehrFEM++’s default meshes. Try different meshes by
changing the
// function index parameter
/* std: :shared ptr<lf::mesh::Mesh> mesh p =
* 1f::mesh: :test_utils: :GenerateHybrid2DTestMesh(0, 1.0 / 3.0); */
auto mesh_p = Generate2DTestMesh () ;
// We use a linear Lagrangian FE space
auto fe_space =
std ::make_shared<|f :: uscalfe :: FeSpacelLagrangeO1<double >>(mesh_p) ;
// Reference to current mesh, obtained from the FE space

const If ::mesh::Mesh& mesh{x(fe_space-—>Mesh()) };
// Obtain local—->global index mapping for current finite element
space

const If ::assemble:: DofHandler& dofh{fe_space-—>LocGlobMap() }:
// Dimension of finite element space®
const If ::base::size_type N_dofs(dofh.NoDofs()):

// Matrix in triplet format holding Galerkin matrix, zero initially.
If ::assemble : : COOMairix<double> A(N_dofs, N_dofs) ;
// Invoke assembly on cells (co-dimension = 0). The element matrix

builder is
// passed as an argument

If ::assemble :: AssembleMatrixLocally (0, dofh, dofh, (elmat_builder, 'A) ;
Eigen :: SparseMairix<double> A_crs = A.makeSparse() ;

// Right—-hand side vector; has to be set to zero initially

Eigen:: Matrix<double, Eigen::Dynamic, 1> phi(N_dofs) ;

phi.setZero() ;

// Invoke assembly on cells (codim == 0). The element vector builder
is passed

// as an argument

AssembleVectorLocally(0, dofh, (elvec_ builder) phi);

// Define solution vector
Eigen :: VectorXd sol_vec = Eigen:: VectorXd::Zero(N_dofs) ;

/* BEGIN_SOLUTION */
// Solve linear system using Eigen’s sparse direct elimination
Eigen :: SparseLU<Eigen :: SparseMatrix<double>> solver;
solver.compute(A_crs) ;
if (solver.info () != Eigen::Success) {
throw std ::runtime_error("Could not decompose the matrix");
}
sol_vec = solver.solve(phi);
/* END_SOLUTION x*/
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C++11 code 2.8.3:
= GITLAB

Sub-problem (2-8.d): Implementation of solvePoissonBVP ()

2 |Eigen::VectorXd solvePoissonBVP() ({
3 // Convert tPoissonda function f to a LehrFEM++ mesh function object

If ::uscalfe:: MeshFunctionGlobal mf_f{f};

// Define the solution vector
Eigen::VectorXd solution = Eigen::VectorXd::Zero(1);

9 /* BEGIN_SOLUTION x/
10 // Define the element matrix and element vector builders and solve

the system
1 If ::uscalfe::LinearFELaplaceElementMatrix elmat_builder;

12 If ::uscalfe::LinearFELocalLoadVector<double, decltype(mf_f)> elvec_builder(
13 mf_f);

15 std ::cout << "===================" << std::endl;
16 std :: cout << "solvePoissonBVP" << std::endl;

18 solution = solve(elmat_builder, elvec_builder);
19 /* END_SOLUTION */

21 return solution;

= solvePoissonBVP
s Error of solver: Absolute error = 31.6288, relative error = 1.24895

+ Norms of FE solution: L2—norm = 9.58266e+16, H1—seminorm = 25.229
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The problem haunting any finite element Galerkin discretization of (2.8.2) does not arise for the rather
similar boundary value problem

—Au-+u=f in Q , gradu-n=0 on 0JQ, (2.8.4)

also posed on the unit square () :]0,1[2. Explain why based on the weak (variational) formulation that

you should derive first.
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ﬂ For a triangle K deduce the formula for the 3 x 3 element matrix Mg related to the bilinear form

m(u,v) := /sz(x)v(x)dx , u,veLl}Q), (2.8.6)

and the finite element space S (M ). This element matrix is also called the element mass matrix. Only
the area |K| of K will enter your formula.
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Lemma 2.7.5.5. Integration of powers of barycentric coordinate functions

For any non-degenerate d-simplex K with barycentric coordinate functions A1, . . .

nentsa]-EN,jzl,...,d+1,
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bk(x) = (1—x1)(1 - x2),

br(x) = x1(1 - x2),

by(x) = x1x2,

by(x) = (1—2x1)x2.

B bi(a)) = dij

1<ij<4,

(2.6.2.3)
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The problem haunting any finite element Galerkin discretization of (2.8.2) does not arise for the rather
similar boundary value problem

—Au+u=f , gradu-n=0 on 9Q), (2.8.4)

also posed on the unit squafe () 0, 1[2 Explain why based on the weak (variational) formulation that

you should derive first.
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