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~ Problem 8-3: Conservative finite-volume
discretization based on Godunov numerical flux
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%-I— aism( ) =0 on Rx|[0,T], (8.3.1)

with initial condition u(x, 0) = up(x), x € R, satisfying

0<up(x) <1, xeR (8.3.2)
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&(/ Determine the entropy solutions of the Riemann problem with
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Lemma 8.2.5.4. Shock solution of Riemann problem

For any two states u;,u; € IR the piecewise constant function

u(x, ) = {ul for x < st, g = fur) — f(u,)

u, forx > st,

, xR 0<t<T,

is a weak solution (— Def. 8.2.3.4) of the [related Riemann problem (— Section 8.2.5) for the 1D
scalar conservation law (8.2.2.1).
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u; > u,: diverging characteristics

Lemma 8.2.5.10. Rarefaction solution of Riemann problem
If f € C2(R) is strictly { SOLINEIT Ui S Uy,

then
concave and u, < uy,

forx < min{ f'(u;), f'(u,)} - t,

uj
u(x,t) := {g(%) for min{ f" (), f'(ury)} < § < max{f'(u), f'(ur)},
Uy for x > max{f'(u;), f'(u,)} - t,

¢ := (f')"1, is a continuous weak solution of the Riemann problem (— Def. 8.2.5).
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1 for x < —utt,
%arccos(—'f) for —m<ux/t<m,
0

u(x, t) = 2
for x > mtt.

and (8.3.2). Describe the maximal support of the solution u of (8.3.1) in the
x-t-plane.

L) deoeaning & € (OTT
Ls speecd of pzﬁpﬁjﬂﬁ@ﬁ S

m b = D7) =

Soarw = £1(0O) = 7

sopp (-, ) < [O-mt, TryL ]



3)
c, Codunor vomencal  Flux  F,lv,20) 0%yw=-7

re « ¥ concan<
o lenediale state w’(v20) bom ozl Bipem pobng

{ /
70 ;

—

[
//(V/v),w ,
S =0

: £ (o) F(p]
s = o
V= w o tarelachon
[
Nz 7 / =
a=(f) 1 o) = 3 4lo)=1 /FF%Q? O=4 ()
10 @,

bamsonic  nelachon

Jfo<wands > 0,

v Lifv>wand cos o > 0, i )
. sin(7tw) = sin(7o)
uv(v,w) = 4 :

w ,fv<wands <0, § 1=

_ w—"70
w Lifv>wand cos tw < 0,
\% ,if v > w and cos tv < 0 < cos tw ,

Pl a0)

F&D({l/7w>

O
C

7

(QS%{@/ epot‘odZ Rl - S, —

WAV

e, FU-MOL - ODE
(%/WM)

%62

— 77 11 T K
tou® Lo, Gy | k) 2, >+§<£h(,,<k>)+£;,(x)).
- — _ T i
> Kj = (K)] = Hj Iz( (s Hj1) (1 ]'}l])) (8.3.6)
(Hn()); = i — 2] (E(xj, xj41) — F(xj-1, ;) + F(uj, pj1) — F(uj1, 1)) -

o?-/?m“h/ Godutnsy- ovmen el e

‘P/ Relying on sineClawRhs () and explTrpzTimestepping () write a C++ function (in the file
g/ finitevolumesineconslaw.h)
template <typename RHSFUNCTOR>
Eige y Xd solveSineConsLaw (
RHSFUNCTOR &&g, unsigned int N,
unsigned int M);

that solves the Cauchy problem for (8.3.1) numerically over the time interval |0, 1] with initial data

uo(x)z{1 foro=x<1, l> §(7W MﬁC/[‘pfl‘]

0 elsewhere,
using an equidistant spatial mesh with N cells and M uniform timesteps. Choose the spatial interval barely
large enough such that the spatial support of u(x, t) will be contained in it for all 0 < ¢ < 1. Sampleihe
initial data 1p at midpoints of mesh cells.
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(J Realize a C++ function (in the file finitevolumesineconslaw.cc)

/ unsigned int findTimestep();

that determines the maximum possible timestep size for the numerical experiment of Sub-problem (8-3.f).
It returns the minimal number M of timesteps that barely avoids blow-up.
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% / In the file finitevolumesineconslaw. cc create a modification

Eigen: :Ve rXd sineClawReactionRhs (
const Eigen::Ve rXd &mu, double c)

of the function sineClawRhs () from Sub-problem (8-3.d) so it still serves the same purpose but now
for the augmented conservation law with reaction term
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=+ xs'm(mt) =—cu, c>0 (8.3.12)
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