@D

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Homework Problem Video Tutorial

Problem 2-9: Handling degrees of freedom
(DOFs) in LEHRFEM++

Prof. R. Hiptmair, SAM, ETH Zurich

Date: March 2, 2019
(C) Seminar fir Angewandte Mathematik, ETH Zdrich

Dependh o Sechions 267 (24), 224 (2242)

M 2 MMWM p[mm moh
Lagrmgs FE cputts LM, 1)
5(/ LSFOZ S /I/M 6%/]%0(/ %h/ﬁ/ﬁé LSF W/)
;,_f\,\,g — L
{D, 22,2 7 mK th, .
Spa/) - F(@-) C_ Sp&m 2(@)
¢
Qz = 2 ? 'b;j/
o 3>
lh/ofrw&&/n'm node,

B)/ canlinal baeto)D/M
Vg G\P(/{Q)

¢
4 =2 (D,)b,
)
P1 | m
Ay = bg + 3bx + 3b% ,
Ay = bg + 5by + b, (2.9.1)
Az = by + 3b% + b7

Ly SCit)

o o (S
= &’Mﬂ/’/) /SF
I n p& (ation hode

21

63

13

The member functions of If::assemble::DofHandler are explained in [Lecture — § 2.7.4.13].
e size_type 1lf::assemble::DofHandler::NoLocalDofs (const
IfismeshesEntity &) const; P— 5

e ... Ilf::assemble::DofHandler::GlobalDofIndices (const
IfeemeshisEntitywéy) const; l: 3 (Q / \7'éi7 €i§-57/:7

e size_type lf::assemble: DofHandler OIHtPIlQIJOi (2 const
1f::mesh::Entity &) const; — (7

e ... Ilf::assemble::DofHandler::InteriorGlobalDofIndices (const
IfvimeshisEntity&®) const =3 [j

C, m@fn%%mgﬁff woociohed) enhhies of

meniSons

C++11 code 2.9.2: Implementation of CountEntityDofs () => GITLAB

(=] w 4 w N

// Idea:

7 // each
8 std ::
9 for (std::

shared_ptr<const If:

std::array<std:: size_t, 3> countEntityDofs(
const If ::assemble:: DofHandler& dofhandler) {
std::array<std::size_t, 3> entityDofs;

/% BEGIN_SOLUTION x*/

iterate over entities in the mesh and get interior number

of dofs for

:mesh ::Mesh> mesh = dofhandler.Mesh() ;

size_t codim = 0; codim <= 2; ++codim) {

10 entityDofs[codim] =

11 for

(const auto& el
12 it (el.RefEl() ==

: mesh-—>Entities (codim)) {
If ::base:: RefEl::kQuad()) {

13 throw "Only triangular meshes are allowed!";

14 }

15 entity
16 }

17 }

Dofs[codim]l += dofhandler.NolnteriorDofs(el) ;

18 /* END_SOLUTION */
19 return entityDofs;

A
Oee

/ Coont OSF

mQQm

PZ% Enh'tier On B&vm&ﬂy ()

C++11 code 2.9.3: Sub-problem (2-9.d): Implementation of CountBoundaryDofs ()
=> GITLAB

> |std::size_t countBoundaryDofs(const If ::assemble:: DofHandler& dofhandler) ({

3 std :: shared_ptr<const |f ::mesh::Mesh> mesh = dofhandler.Mesh() ;

4 // given an entity, bd_flags(entity) == true, if the entity is on the
5 // boundary

6 If ::mesh::utils ::AllCodimMeshDataSet<bool> "‘bd flags(

7 If ::mesh:: utils :: flagEntitiesOnBoundary(mesh)) ;

8 std::size_t no _dofs on bd = 0;

9 /* BEGIN_SOLUTION x/

10 // Edges and nodes can be on the boundary

1 for (const auto& edge mesh—>Entities (1)) {

12 if (bd_flags(edge)) {

13 no_dofs_on_bd += dofhandler. NolnteriorDofs (edge) ;
14 }

15 }

16 for (const auto& node : mesh—>Entities(2)) {

17 if (bd_flags(node)) {

18 no_dofs_on_bd += dofhandler. NolnteriorDofs (node) ;
19 }

o [}

21 /% END_SOLUTION %/
2 return no_dofs_on_bd;

Write a C++ function

double integrateLinearFEFunction (
const 1f::assemble::DofHandler &dofhandler, . ‘
const Eigen::VectorXd &mu); &£ bmgg e)(]D&{W\((O//) Cﬁ%@(@@fg

that computes fQ up, dx for uy, € 8?(M), whose nodal basis expansion coefficients are passed in
mu. The dofhandler arguments provides the local—global index mapping. Check whether the
If::assemble::DofHandler object dofhandler really fits the Lagrangian finite element space S?(M).

<
My & SUAM) 2 Ly = 2 44,(at) 7

kmga/x = LK
(ads = = Lkl = (a8)
T2

K e £ 27 /f\

s of ca&%‘dmﬁ zechy 7/?

C++11 code 2.9.4: Sub-problem (2-9.e): Implementation of IntegrateLinearFEFunction
=> GITLAB

double integrateLinearFEFunction (
const If ::assemble:: DofHandler& dofhandler,
const Eigen::VectorXd& mu) {
double | = 0;
/* BEGIN_SOLUTION */
std :: shared_ptr<const If ::mesh::Mesh> mesh = dofhandler.Mesh() ;
for (const auto& cell : mesh-—>Entities(0)) {
// check if we the FE space is really S?
10 if (dofhandler.NoLocalDofs(cell) != 3) {
1 throw "Not a S 120 FE space!";

12 }

© O N O a0 A W N

13 // iterate over dofs

14 auto int_dofs = dofhandler{GlobalDoflndices(cell));

15 for (auto dof_idx_p = int_dofs.begin(); dof_idx_p < int_dofs.end() ;

16 ++dof_idx_p) {

17 // local integral of the basis function associated with this dof:

18 // in linear Lagrangian FE, the integral over the basis functions
over

19 // a ;;iangle K is: 1/3*vol (K)

20 const double |_bary = 1.0 / 3.0 =
If ::geometry::Volume(xcell.Geometry());

21 // multiply by the value at the dof to get local contribution

22 | &= |_bary *x mu(xdof_idx_p) ;

2 }

24 }

25 /* END_SOLUTION */

2% return |;

Write a C++ function

double integrateQuadraticFEFunction (
const 1f::assemble::DofHandler &dofhandler,

const Eigen::VectorXd &mu);

that computes fQ uy, dx for uy, € SQ(M), whose nodal basis expansion coefficients are passed in mu.
The dofhandler arguments provides the local—global index mapping for the quadratic Lagrangian
finite element space. Check whether the If::assemble::DofHandler object dofhandler really fits the
Lagrangian finite element space Sy(M).

Use the formula given in [Lecture — Lemma 2.7.5.5] to compute the integrals of the local shape functions

[Lecture — Eq. (2.6.1.6)] over a single triangular cell.
L=723

0
2 -]
Need fK be oA A {/5//</ A A

Lemma 223, 5

C++11 code 2.9.5: Sub-problem
integrateQuadraticFEFunction() => GITLAB

(2-9.f)implementation of

> |double integrateQuadraticFEFunction(const If ::assemble:: DofHandler&

dofhandler,
3 const Eigen::VectorXd& mu) ({
4 double | = 0;
5 /* BEGIN_SOLUTION */
6 std :: shared_ptr<const |f ::mesh::Mesh> mesh = dofhandler.Mesh() ;
7 for (const auto& cell mesh—>Entities (0)) {
8 // check if we the FE space is really S(z)
9 if (dofhandler.NoLocalDofs(cell) != 6) {
10 throw "Not a S 2”0 FE space!";
11
}
12 const double’ weight = 1.0 / 3.0 % If ::geometry::Volume(xcell.Geometry());
13 // iterate over dofs
14 auto int_dofs = dofhandler. GlobalDoflndices(cell);
15 // The integrated basis functions associated with the nodes are 0:
16 // [¢bkdx =0 for j=1,2,3. Skip!
17 for (int | = 3; | < 6; ++I1) {
18 // The integrated basis functions associated with the edges are:
19 // [bkdx =|K|/3 for j=4,56
20 // multiply by the value at the dof to get local contribution
21 | += (weight * mu(int_dofs[1]));

22 1

23 }

24 /* END_SOLUTION x*/
25 return |;

;S M) < s)
)V/l/(héff/z//) /U&SQSWM%W@'W 1o 4he
by of S70H)

By definition SY(M) C SY(M). Hence, every u;, € SY(M), which may be given through its basis
expansion coefficient vector ji € R¥Y(M) can be written as a linear combination of nodal basis functions

of SJ(M) with an associated coefficient vector { € R¥V(M)=1£(M),
=
FE, } =Y W”Z

Devise a C++ function
that computes Z from ji passed in mu. The two If::assemble::DofHandler objects belong to the finite
element spaces S} (M) and S§(M), respecively (This should be checked in the code).

Ve SI) - g, = =

74

Eigen::VectorXd convertDOFsLinearQuadratic(
const 1f::assemble::DofHandler &dofh_Linear_ FE,
const 1f::assemble::DofHandler &dofh_Quadratic
const Eigen::VectorXd &mu);

Z%@)b}

@@%/mzw@@;@£$=

U, (at) A,

\é;ﬂ&%ﬁ%?@{ MU, 1 the (i) -

M 1k

Ue hwe o

?
to (nd
POZCL/WV) nodd @

We a/ﬁp% a Local /Ma]@wﬁw

P3

M;?//Oz) =

U (af)
L=773

Uy () = K

P>

On ¥ L e s W/&/%/:‘&/XS of
ﬁ} —— %é
[> (727)% = U, /5(/4/)

3
Y (7); Ai(px)
= j ,

=0J;

(i),
yR:

Z(ﬂ), Ai(pr)
) ———

€{0,%}

(1), = Z(ﬂ), Ai(pR)
I ———

{0, 2'}

(1), = Z(ﬂ), Ai(PR)
N——

€{0,1}

(#);, = = 3 (G, + Gs,)
= 2 (G, + Gy

= 5 (G, + G, -

M»/J//C/M

S i) ~LSF
S,) -/ SF

e

NumPDE@ETHZ

T

7

o not som the el

w<1

NumPDE@ETHZ

