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Problem 1-2: Linear functionals on Sobolev
spaces
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In order to show that a functional is unbounded on L?(Q)), one tries to find a function v € L?(Q),
which can be verified by showing |||, 2(¢;) < e, for which [£(v)| = oo, which often manifests itself
as the divergence of an improper integral.
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lr(v) := [ v(x)dx, (1.2.2)
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l3(v) := /grad o(x)-n(x)dS(x) (1.2.3)
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In order to show that a functional is unbounded on_L~{(}), one tries to find a function v € j}(ﬁ),
which can be verified by showing ”U”HEQ) < oo, for which |£(v)| = oo, which often manifests itself
as the divergence of an improper integral.
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l1(v) = /c gradv(x)dx, c<€R?, (1.2.1)
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l2(0) = / o(x) dx (1.2.2)
O

l3(0) = /grad v(x)-n(x)dS(x), (1.2.3)
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Theorem 1.9.0.8. Multiplicative trace inequality

AC=C(Q) > O ||”||i2(;)()) < CH”HLZ(Q) ' ||“||HI(Q) Vu € HI(Q) :
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