@D

ETH Lecture 401-0674-00L Numerical Methods for Partial Differential Equations

Homework Problem Video Tutorial

Problem 3-7: Maximum principle for
reaction-diffusion boundary value problems

Prof. R. Hiptmair, SAM, ETH Zurich

Date: March 29, 2019
(C) Seminar flir Angewandte Mathematik, ETH Z(rich

—(1—-c)Au+cu=f inQ,

Dinchlef . ‘

B\/P u=0 ondQ, (3.7.1)

2, Varizhimat Gmataton: ([

LVP- wemiy [ (1-ogradu-gudo+andy= [ fodx weHQ). @72
<zl pt ) :/2777/)

b, &= KQMP & Iv)= Lal) L)

= argmin 5 / (1 - 0) | gradwe(x)|* + cw(x)*dx— [ f(xpdx)dx.
WeH(Q

’ Following the reasoning of [Lecture — Section 3.7.1] argue why
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All triagles of M have the same shape and, therefore, will give rise to the same element matrices for
A (X ” ) = (AaX /0( é() — 0 7%]/ Lome X%é 52 the bilinear form (1, v) ~— | grad u - grad v dx and the lowesr-order Lagrangian finite element space
X& J2 SY(M). Compute this element matrix.
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6/ Compute the S;'(M )-element matrix for the triangles of M and the bilinear form (11, 0) Jquvdx.
o 5~ This element matrix is also known as element mass matrix.
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@ Write a C++ function

g FEigen::SparseMatrix<double>
/ computeGalerkinMatrix (unsigned int M, double c);

that initializes the finite element Galerkin matrix for (3.7.1), the mesh from Fig. 30 and the finite element
space S?IO(M), assuming lexikographic numbering of global shape functions. The argument M passes
the number of nodes in each direction, see Fig. 31, and c the constant ¢ €0, 1[.
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Implement a C++ function

template < typename FUNCTOR >
Eigen: :Ve rXd computeLoadVector (unsigned int M, FUNCTOR &&f);

that computes the right-hand-side vector ¢ < RN for the finite element Galerkin discretization of
(3.7.1), using the mesh from Fig. 30 and the finite element space S?O(M), and assuming
lexikographic numbering of global shape functions. The argument £ paéses a functor of type
std: : function<double (double, double) > for the source function f.

Evaluate the local integrals approximately with the 2D local trapezoidal rule [Lecture — Eq. (2.4.6.10)].
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U / Show by means of a counterexample that for certain values of the constant ¢ €]0, 1] the finite element
discretization of (3.7.1) using the mesh from Fig. 30 with M - ‘47/ and the finite element space SSO(M)
violates the discrete maximum principle established in Sub-problem (3-7.¢) in the sense that the finite
element Galerkin solution 1, € S?/O(M) can attain values > 0 though f < 0.
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We consider the same finite element Galerkin discretization of (3.7.1) on M as above. However, now we
/ evaluate all occurring local integrals by means of the local 2D trapezoidal rule [Lecture — Eq. (2.4.6.10)]
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Write a C++ function

Eigen::SparseMatrix<double> computeGalerkinMatrixTR (
unsigned int M, double c);

with the same purpose and arguments as computeGalerkinMatrix () from Sub-problem (3-7.9),
but now employing the local 2D trapezoidal rule.
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Show that for the Galerkin finite element discretization of (3.7.1) on Q) =]0,1[* introduced in Sub-
problem (3-7.i) the property 1, (x) < 0 is satisfied for the finite element solution, if /(x) < 0 for all x € Q).
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